Response of seedlings of two Eucalyptus and three deciduous tree species from Ethiopia to severe water stress

2004 ◽  
Vol 201 (1) ◽  
pp. 119-129 ◽  
Author(s):  
Jiregna Gindaba ◽  
Andrey Rozanov ◽  
Legesse Negash
1990 ◽  
Vol 6 (4) ◽  
pp. 439-448 ◽  
Author(s):  
T. G. Ranney ◽  
T. H. Whitlow ◽  
N. L. Bassuk

1995 ◽  
Vol 95 (3) ◽  
pp. 399-408 ◽  
Author(s):  
Elena Toll ◽  
Federico J. Castillo ◽  
Pierre Crespi ◽  
Michele Crevecoeur ◽  
Hubert Greppin

EDIS ◽  
2017 ◽  
Vol 2017 (6) ◽  
Author(s):  
Claudia Paez ◽  
Jason A. Smith

Biscogniauxia canker or dieback (formerly called Hypoxylon canker or dieback) is a common contributor to poor health and decay in a wide range of tree species (Balbalian & Henn 2014). This disease is caused by several species of fungi in the genus Biscogniauxia (formerly Hypoxylon). B. atropunctata or B. mediterranea are usually the species found on Quercus spp. and other hosts in Florida, affecting trees growing in many different habitats, such as forests, parks, green spaces and urban areas (McBride & Appel, 2009).  Typically, species of Biscogniauxia are opportunistic pathogens that do not affect healthy and vigorous trees; some species are more virulent than others. However, once they infect trees under stress (water stress, root disease, soil compaction, construction damage etc.) they can quickly colonize the host. Once a tree is infected and fruiting structures of the fungus are evident, the tree is not likely to survive especially if the infection is in the tree's trunk (Anderson et al., 1995).


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 562
Author(s):  
Karen Campos ◽  
Andrés R. Schwember ◽  
Daniel Machado ◽  
Mónica Ozores-Hampton ◽  
Pilar M. Gil

Common bean is an important crop, consumed as green-shelled bean in several countries. In Chile, green-shelled beans are cultivated often as a dry land crop, vulnerable to drought. The objective of this study was to characterize the hydric and productive responses of four green-shelled bean genotypes subjected to deficit irrigation in order to outline production strategies in the face of increasing water scarcity. Two experiments were evaluated: one pot experiment with three irrigation treatments, supplying 100% of the crop evapotranspiration (ETc) (T100), 50% (T50), and 30% (T30); and an open field experiment with two treatments: 100% (I100) and 40% of ETc (I40). Treatments were applied during reproductive stage in determinate cultivars and vegetative stage in indeterminate plants. Severe water restriction (T30 and I40) in both experiments showed a significant decrease in stomatal conductances, as well as biomass and number of grains per pod; I40 treatment also showed a reduction in chlorophyll fluorescence. Water use efficiency (WUE) was higher under water stress in field (I40), but lower on the T30 treatment from the pot experiment. Determinate cultivars showed 22.7% higher of 100-seed weight compared to indeterminate type, and, thus, higher tolerance to drought. Our results indicate that severe water stress is highly harmful in terms of yield, and a moderate controlled deficit irrigation plus the use of determinate genotypes may be a strategy for producing green-shelled bean successfully under a drought scenario.


1999 ◽  
Vol 54 (9-10) ◽  
pp. 830-833 ◽  
Author(s):  
Akira Wadano ◽  
Mitsuharu Azeta ◽  
Shin-ichi Itotani ◽  
Ai Kanda ◽  
Toshio Iwaki ◽  
...  

Grafting is an easy way to produce a new seedling, which can tolerate against various stresses. During the acclimation after grafting, however, the seedlings still suffer a severe water stress. It is well known that water stress produces active oxygen to oxidize ascorbic acid. The concentration of ascorbic acid in the leaves was analyzed by HPLC equipped with an electrochemical detector. The column used was SP-120-5-ODS-BP (DAISO, JAPAN) and elution was performed with 0.1 ᴍ phosphate buffer, pH 3.0. After grafting the seedlings were acclimated under a 6-hr light/dark regimen. The content of ascorbic acid increased gradually during 2 days compared with control. The ascorbate peroxidase showed about constant activity, so the increase of ascorbic acid may be due to its requirement to cure the grafting


1968 ◽  
Vol 48 (2) ◽  
pp. 129-137 ◽  
Author(s):  
A. R. Maurer ◽  
H. F. Fletcher ◽  
D. P. Ormrod

Pea plants growing in "weighing lysimeters" were subjected to five soil-water regimes to determine their response to varying conditions of soil water imposed at different stages of development. Plants subjected to a minimal water stress developed luxuriantly and continued to grow up to the harvest period. Pea yield and plant height were not reduced, but fresh weight and dry matter were less if irrigation was applied when soil water fell to 60% rather than 88% of that available. A severe water stress after blossom reduced pea yield, irrespective of soil-water conditions prior to blossom. Plants which had been given ample soil water before blossom wilted visibly when a severe stress was imposed in the post-blossom period, yet wilting did not occur in plants subjected to severe water stress both before and after blossom. Severe water stress prior to blossom did not cause a decrease in pea yield if ample soil moisture was made available after blossom.


Sign in / Sign up

Export Citation Format

Share Document