Effects of diversity of tree species and size on forest basal area growth, recruitment, and mortality

2007 ◽  
Vol 243 (1) ◽  
pp. 116-127 ◽  
Author(s):  
Jingjing Liang ◽  
Joseph Buongiorno ◽  
Robert A. Monserud ◽  
Eric L. Kruger ◽  
Mo Zhou
Forests ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 167
Author(s):  
Stella Britwum Acquah ◽  
Peter L. Marshall

Research Highlights: We investigated the competitive interactions among three tree species (interior Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco), interior spruce (Picea glauca [Moench] Voss × Picea engelmannii Engelm.), and lodgepole pine (Pinus contorta Dougl. Ex Loud. var. latifolia Englem.)) in multi-aged stands in central British Columbia, Canada. Background and Objectives: Understanding competitive interactions among tree species in mixed-species stands is fundamental to supporting silvicultural decision-making in such stands. Using the periodic annual basal area increment for single trees as our dependent variable, we investigated whether neighboring trees competed with subject trees independently of species identity. We also examined the differences in single-tree basal area growth among the three conifer species over time under different levels of competition. Materials and Methods: We developed several spatially explicit, single-tree basal area growth models for interior Douglas-fir, interior spruce, and lodgepole pine using data from 16 plots in two blocks of a long-term study (five measurements over a 21-year period) on the response to pre-commercial thinning. We compared these equations to assess whether intraspecific or interspecific competition predominated. We also examined the differences in basal area growth among the three conifer species over time under different levels of competition. Results: We found asymmetrical relationships between the conifer trees and their neighbors for all species, indicating that the main driver limiting growth in these stands is aboveground competition for light. There was evidence of higher intraspecific competition for small (<10.0 cm DBH) interior Douglas-fir in one block. However, there was no general pattern among larger subject trees with respect to the identity of neighborhood competitive effects and the equivalence of neighbors. We observed a higher level of basal area growth over time for interior Douglas-fir than for lodgepole pine and interior spruce, irrespective of the competition intensity and, not surprisingly, the growth rate declined with increasing competition levels for the three species. Conclusions: Our results provide an understanding of how interior Douglas-fir stands will develop over time and information on species interactions that could help forest managers explore different silvicultural options and their effects on individual tree growth in these complex stands.


1988 ◽  
Vol 5 (3) ◽  
pp. 221-222
Author(s):  
Arlyn W. Perkey ◽  
Kenneth L. Carvell

1973 ◽  
Vol 3 (4) ◽  
pp. 495-500 ◽  
Author(s):  
James A. Moore ◽  
Carl A. Budelsky ◽  
Richard C. Schlesinger

A new competition index, modified Area Potentially Available (APA), was tested in a complex unevenaged stand composed of 19 different hardwood species. APA considers tree size, spatial distribution, and distance relationships in quantifying intertree competition and exhibits a strong correlation with individual tree basal area growth. The most important characteristic of APA is its potential for evaluating silvicultural practices.


Forests ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 409
Author(s):  
Gheorghe Marin ◽  
Vlad C. Strimbu ◽  
Ioan V. Abrudan ◽  
Bogdan M. Strimbu

In many countries, National Forest Inventory (NFI) data is used to assess the variability of forest growth across the country. The identification of areas with similar growths provides the foundation for development of regional models. The objective of the present study is to identify areas with similar diameter and basal area growth using increment cores acquired by the NFI for the three main Romanian species: Norway spruce (Picea abies L. Karst), European beech (Fagus sylvatica L.), and Sessile oak (Quercus petraea (Matt.) Liebl.). We used 6536 increment cores with ages less than 100 years, a total of 427,635 rings. The country was divided in 21 non-overlapping ecoregions based on geomorphology, soil, geology and spatial contiguousness. Mixed models and multivariate analyses were used to assess the differences in annual dimeter at breast height and basal area growth among ecoregions. Irrespective of the species, the mixed models analysis revealed significant differences in growth between the ecoregions. However, some ecoregions were similar in terms of growth and could be aggregated. Multivariate analysis reinforced the difference between ecoregions and showed no temporal grouping for spruce and beech. Sessile oak growth was separated not only by ecoregions, but also by time, with some ecoregions being more prone to draught. Our study showed that countries of median size, such as Romania, could exhibit significant spatial differences in forest growth. Therefore, countrywide growth models incorporate too much variability to be considered operationally feasible. Furthermore, it is difficult to justify the current growth and yield models as a legal binding planning tool.


2000 ◽  
Vol 24 (2) ◽  
pp. 112-120 ◽  
Author(s):  
Michael M. Huebschmann ◽  
Lawrence R. Gering ◽  
Thomas B. Lynch ◽  
Onesphore Bitoki ◽  
Paul A. Murphy

Abstract A system of equations modeling the growth and development of uneven-aged shortleaf pine (Pinus echinata Mill.) stands is described. The prediction system consists of two main components: (1) a distance-independent, individual-tree simulator containing equations that forecast ingrowth, basal-area growth, probability of survival, total and merchantable heights, and total and merchantable volumes and weights of shortleaf pine trees; and (2) stand-level equations that predict hardwood ingrowth, basal-area growth, and mortality. These equations were combined into a computer simulation program that forecasts future states of uneven-aged shortleaf pine stands. Based on comparisons of observed and predicted stand conditions in shortleaf pine permanent forest inventory plots and examination of the growth patterns of hypothetical stands, the simulator makes acceptable forecasts of stand attributes. South. J. Appl. For. 24(2):112-120.


2002 ◽  
Vol 32 (7) ◽  
pp. 1232-1243 ◽  
Author(s):  
Nathan J Poage ◽  
John C Tappeiner, II

Diameter growth and age data collected from stumps of 505 recently cut old-growth Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees at 28 sample locations in western Oregon (U.S.A.) indicated that rapid early and sustained growth of old Douglas-fir trees were extremely important in terms of attaining large diameters at ages 100–300 years. The diameters of the trees at ages 100–300 years (D100–D300) were strongly, positively, and linearly related to their diameters and basal area growth rates at age 50 years. Average periodic basal area increments (PAIBA) of all trees increased for the first 30–40 years and then plateaued, remaining relatively high and constant from age 50 to 300 years. Average PAIBA of the largest trees at ages 100–300 years were significantly greater by age 20 years than were those of smaller trees at ages 100–300 years. The site factors province, site class, slope, aspect, elevation, and establishment year accounted for little of the variation observed in basal area growth at age 50 years and D100–D300. The mean age range for old-growth Douglas-fir at the sample locations was wide (174 years). The hypothesis that large-diameter old-growth Douglas-fir developed at low stand densities was supported by these observations.


Sign in / Sign up

Export Citation Format

Share Document