Target species identity is more important than neighbor species identity

2008 ◽  
Vol 255 (1) ◽  
pp. 203-213 ◽  
Author(s):  
M. Dekker ◽  
P.J. Verkerk ◽  
J. den Ouden
2007 ◽  
Vol 56 (1-6) ◽  
pp. 101-110 ◽  
Author(s):  
Chr. Wehenkel ◽  
F. Bergmann ◽  
H.-R. Gregorius

Abstract Studies on plant communities of various annual species suggest that there are particular biotic interactions among individuals from different species which could be the basis for long-term species coexistence. In the course of a large survey on species-genetic diversity relationships in several forest tree communities, it was found that statistically significant differences exist among isozyme genotype frequencies of conspecific tree groups, which differ only by species identity of their neighbours. Based on a specific measure, the association of the neighbouring species with the genotypes of the target species or that of the genotypes with the neighbouring species was quantified. Since only AAT and HEK of the five analysed enzyme systems differed in their genotype frequencies among several tree groups of the same target species, a potential involvement of their enzymatic function in the observed differences was discussed. The results of this study demonstrate a fine-scale genetic differentiation within single tree species of forest communities, which may be the result of biotic interactions between the genetic structure of a species and the species composition of its community. This observation also suggests the importance of intraspecific genetic variation for interspecific adaptation.


2019 ◽  
Vol 37 ◽  
pp. 81-98 ◽  
Author(s):  
Annegret Grimm-Seyfarth ◽  
Aleksandra Zarzycka ◽  
Teresa Nitz ◽  
Lisa Heynig ◽  
Nadine Weissheimer ◽  
...  

Ecology often faces the problem that many threatened species are highly elusive but also conflict-laden. Thus, proper monitoring data are inevitable for their conservation and management. Indirect monitoring through scats is frequently used for such species, but scats of related species or species with similar diet are often visually indistinguishable. Since genetic methods for species identification are time-consuming and cost-intensive, a verification of the target species beforehand would be extremely beneficial in reducing effort to the analysis of the target species only. Such species discrimination could be provided through species-specific scat detection dogs. Therefore, we evaluated the reliability of species-specific scat detection dogs for two mustelid species feeding on identical diets: the Eurasian otter (Lutra lutra) and the American mink (Neovison vison), both of which are conflict-laden and increasing their populations and distribution ranges in central Europe. Their scats resemble each other in morphology and odour, exacerbating the differentiation even for experts. To evaluate whether detection dogs can reliably discriminate between related species feeding on similar diets and if their use would be beneficial, we tested their abilities against those of humans. We first proved that scat characteristics are not statistically different between species. Likewise, visual species identification through people with different experience levels was only partly successful. Experts showed higher average accuracy (0.89) than non-experts (0.72 and below), but detection dogs (4 dogs) were able to discriminate otter and mink scats under laboratory conditions with an accuracy of 0.95. Moreover, otter scat detection dogs found up to four times more scat samples in the field, were twice as fast as human searchers and found an almost equal number of scats with different characteristics, while humans mostly found older and larger scats placed on hotspots. We conclude that using detection dogs for species identity will allow subsequent laboratory analyses to be species-specific and avoid spending time and money on laboratory work of the wrong species. It also provides more precise and unbiased information about the target species.


2020 ◽  
Vol 31 (2) ◽  
pp. 83-88 ◽  
Author(s):  
Fernando K. Carvalho ◽  
Rodolfo G. Chechetto ◽  
Alisson A. B. Mota ◽  
Ulisses R. Antuniassi

Crop protection on major crops is now required to follow the principles of integrated pest management so the timing and accuracy of any application of a pesticide or biopesticide has to be more precise to minimize adverse effects on non-target species. The development of UAVs (unmanned aerial vehicles) provides a means of providing a more targeted application of the correct dose, especially by using formulations that are more persistent, thus minimizing loss of spray in areas subject to rain. Avoiding use of too high a dosage allows greater survival of natural enemies and reduces the selection pressure for pests becoming resistant to specific modes of action. The downward flow of air from a UAV should also provide better distribution and impaction of droplets within a crop canopy, reduce soil impaction caused by taking heavy loads of spray applied with 200 l ha–1 of water, and allow treatments when fields are too wet to access with ground equipment. In Asia, many smallholder farmers are using a drone in preference to using a knapsack sprayer. According to Matthews, it has been shown that ULV spraying can be effective, but it needs a narrow droplet spectrum with the droplets remaining stable and not shrinking to become too small. Formulation research can reduce the volatility of the spray, hence the success of oil-based sprays. However, instead of petroleum-based oils, there is a chance to develop vegetable oil carriers with micro-sized particle suspensions to deliver low toxicity pesticides in droplets that can be deposited within the crop and not drift beyond the crop boundary. Oil deposits will be less prone to loss after rain so less should be lost in neighbouring ditches and water courses, especially as rainfall patterns are forecast to change. More studies are needed to evaluate the swath for deposition, buffer zones, formulation, nozzle selection, to guide future specific legislation for UAV applications.


Author(s):  
Isabella Provera ◽  
Cristina Piñeiro-Corbeira ◽  
Rodolfo Barreiro ◽  
Laura Díaz-Acosta ◽  
Pilar Díaz-Tapia

Author(s):  
Steven J. Presley ◽  
Joerg Graf ◽  
Ahmad F. Hassan ◽  
Anna R. Sjodin ◽  
Michael R. Willig

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mizuki Ogata ◽  
Reiji Masuda ◽  
Hiroya Harino ◽  
Masayuki K. Sakata ◽  
Makoto Hatakeyama ◽  
...  

AbstractEnvironmental DNA (eDNA) can be a powerful tool for detecting the distribution and abundance of target species. This study aimed to test the longevity of eDNA in marine sediment through a tank experiment and to use this information to reconstruct past faunal occurrence. In the tank experiment, juvenile jack mackerel (Trachurus japonicus) were kept in flow-through tanks with marine sediment for two weeks. Water and sediment samples from the tanks were collected after the removal of fish. In the field trial, sediment cores were collected in Moune Bay, northeast Japan, where unusual blooms of jellyfish (Aurelia sp.) occurred after a tsunami. The samples were analyzed by layers to detect the eDNA of jellyfish. The tank experiment revealed that after fish were removed, eDNA was not present in the water the next day, or subsequently, whereas eDNA was detectable in the sediment for 12 months. In the sediment core samples, jellyfish eDNA was detected at high concentrations above the layer with the highest content of polycyclic aromatic hydrocarbons, reflecting tsunami-induced oil spills. Thus, marine sediment eDNA preserves a record of target species for at least one year and can be used to reconstruct past faunal occurrence.


Sign in / Sign up

Export Citation Format

Share Document