Short-term impacts of nutrient manipulations on leaf gas exchange and biomass partitioning in contrasting 2-year-old Pinus taeda clones during seedling establishment

2009 ◽  
Vol 257 (8) ◽  
pp. 1847-1858 ◽  
Author(s):  
Michael C. Tyree ◽  
John R. Seiler ◽  
Chris A. Maier
2003 ◽  
Vol 33 (6) ◽  
pp. 1076-1083 ◽  
Author(s):  
Gregory T Munger ◽  
Rodney E Will ◽  
Bruce E Borders

To determine the importance of competition control and annual fertilization on leaf gas exchange, light-saturated net photosynthesis (Asat), stomatal conductance (gs), and internal CO2 concentration (Ci) were measured multiple times in different-aged loblolly pine (Pinus taeda L.) stands growing at a Piedmont (BF Grant) and Coastal Plain (Waycross) location in Georgia, U.S.A. At both locations, competition control decreased Asat and gs (Asat from 4.53 to 4.12 µmol·m–2·s–1, gs from 0.058 to 0.050 mol·m–2·s–1 at BF Grant; Asat from 4.22 to 4.01 µmol·m–2·s–1, gs from 0.054 to 0.049 mol·m–2·s–1 at Waycross). Overall, fertilization did not have a positive impact on Asat, even though fertilization significantly increased foliar nitrogen concentration. At BF Grant, fertilization significantly decreased gs from 0.057 to 0.051 mol·m–2·s–1 and Ci from 217 to 205 µmol·mol–1. In addition, the decrease in Ci associated with fertilization became larger with stand age. At Waycross, fertilization decreased Ci from 211 to 203 µmol·mol–1 and the interaction between fertilization and stand age was significant for gs and Ci. These results indicate that silivcultural practices that increase resource availability and stand growth did not enhance leaf gas exchange.


HortScience ◽  
2011 ◽  
Vol 46 (11) ◽  
pp. 1512-1517 ◽  
Author(s):  
Manuel G. Astacio ◽  
Marc W. van Iersel

It is common for plants in the retail market to receive inadequate water and lose aesthetic value within a short period of time. The plant hormone abscisic acid (ABA) is naturally produced in response to drought conditions and reduces transpiration (E) by closing the stomata. Thus, ABA may lengthen shelf life of retail plants by reducing water loss. Two studies were conducted to look at effects of ABA on plant water use and shelf life over a 13-day period and short-term effects of ABA on leaf physiology. The objective of the short-term study was to determine how quickly 100-mL drenches of 250 mg·L−1 ABA solution affect leaf gas exchange of tomatoes (Solanum lycopersicum ‘Supersweet 100’). ABA drenches reduced stomatal conductance (gS), E, and photosynthetic rate (Pn) within 60 min. After 2 h, E, gs, and Pn were reduced by 66%, 72%, and 55% respectively, compared with the control plants. In the13-day study, ABA was applied to tomatoes as a 100-mL drench at concentrations ranging from 0 to 1000 mg·L−1 and ABA effects on water use and time to wilting were quantified. Half of the plants were not watered after ABA application, whereas the other plants were watered as needed. In general, higher ABA concentrations resulted in less water use by both well-watered and unwatered plants. ABA delayed wilting of unwatered plants by 2 to 8 days (dependent on the dose) as compared with control plants. In well-watered plants, ABA reduced daily evapotranspiration (ET) for 5 days, after which there were no further ABA effects. Negative side effects of the ABA application were rate-dependent chlorosis of the lower leaves followed by leaf abscission. These studies demonstrate that ABA drenches rapidly close stomata, limit transpirational water loss, and can extend the shelf life of retail plants by up to 8 days, which exemplifies its potential as a commercially applied plant growth regulator.


1970 ◽  
Vol 48 (7) ◽  
pp. 1351-1354 ◽  
Author(s):  
W. żelawski ◽  
F. P. Riech ◽  
R. G. Stanley

This study was undertaken to determine whether tree stems can reassimilate internal CO2 produced by respiration or whether this CO2 is evolved and could possibly interfere with measurements of leaf gas exchange. Radioactive CO2 was added to the stem transpiration stream of slash pine seedlings (Pinus elliottii Engelm.) and the distribution of 14C studied in shoots and needles exposed to dark and light conditions.Photosynthesis decreases the amount of internal CO2 evolved. Large amounts of 14CO2 from the transpiration stream are incorporated into organic compounds of needles and stems, primarily into ethanol-soluble sugars and organic acids, and in time, small amounts of 14C occur in the ethanol-insoluble materials.These results indicate that respiratory CO2 transported in the transpiration stream of woody plants can be reused in photosynthesis or possibly other metabolic processes. Internal CO2 is also evolved to the atmosphere in large amounts, but related research indicates it diffuses primarily out of the stem tissue not the needles. The evolved CO2 supplied from stems does not significantly affect short term measurements of needle gas exchange in pine seedlings.


1993 ◽  
Vol 148 (1) ◽  
pp. 21-27 ◽  
Author(s):  
S. D. Golombek ◽  
P. Lüdders

2005 ◽  
Vol 49 (2) ◽  
pp. 317-319 ◽  
Author(s):  
R. Y. Yordanova ◽  
A. N. Uzunova ◽  
L. P. Popova

Horticulturae ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 73
Author(s):  
Zulias Mardinata ◽  
Tengku Edy Sabli ◽  
Saripah Ulpah

The identification of the key components in the response to drought stress is fundamental to upgrading drought tolerance of plants. In this study, biochemical responses and leaf gas exchange characteristics of fig (Ficus carica L.) to water stress, short-term elevated CO2 levels and brassinolide application were evaluated. The ‘Improved Brown Turkey’ cultivar of fig was propagated from mature two- to three-year-old plants using cuttings, and transferred into a substrate containing 3:2:1 mixed soil (top soil: organic matters: sand). The experiment was arranged as a nested design with eight replications. To assess changes in leaf gas exchange and biochemical responses, these plants were subjected to two levels of water stress (well-watered and drought-stressed) and grown under ambient CO2 and 800 ppm CO2. Water deficits led to effects on photosynthetic rate, stomatal conductance, transpiration rate, vapour pressure deficit, water use efficiency (WUE), intercellular CO2, and intrinsic WUE, though often with effects only at ambient or elevated CO2. Some changes in content of chlorophyll, proline, starch, protein, malondialdehyde, soluble sugars, and activities of peroxidase and catalase were also noted but were dependent on CO2 level. Overall, fewer differences between well-watered and drought-stressed plants were evident at elevated CO2 than at ambient CO2. Under drought stress, elevated CO2 may have boosted physiological and metabolic activities through improved protein synthesis enabling maintenance of tissue water potential and activities of antioxidant enzymes, which reduced lipid peroxidation.


Sign in / Sign up

Export Citation Format

Share Document