scholarly journals Determining the Effects of Abscisic Acid Drenches on Evapotranspiration and Leaf Gas Exchange of Tomato

HortScience ◽  
2011 ◽  
Vol 46 (11) ◽  
pp. 1512-1517 ◽  
Author(s):  
Manuel G. Astacio ◽  
Marc W. van Iersel

It is common for plants in the retail market to receive inadequate water and lose aesthetic value within a short period of time. The plant hormone abscisic acid (ABA) is naturally produced in response to drought conditions and reduces transpiration (E) by closing the stomata. Thus, ABA may lengthen shelf life of retail plants by reducing water loss. Two studies were conducted to look at effects of ABA on plant water use and shelf life over a 13-day period and short-term effects of ABA on leaf physiology. The objective of the short-term study was to determine how quickly 100-mL drenches of 250 mg·L−1 ABA solution affect leaf gas exchange of tomatoes (Solanum lycopersicum ‘Supersweet 100’). ABA drenches reduced stomatal conductance (gS), E, and photosynthetic rate (Pn) within 60 min. After 2 h, E, gs, and Pn were reduced by 66%, 72%, and 55% respectively, compared with the control plants. In the13-day study, ABA was applied to tomatoes as a 100-mL drench at concentrations ranging from 0 to 1000 mg·L−1 and ABA effects on water use and time to wilting were quantified. Half of the plants were not watered after ABA application, whereas the other plants were watered as needed. In general, higher ABA concentrations resulted in less water use by both well-watered and unwatered plants. ABA delayed wilting of unwatered plants by 2 to 8 days (dependent on the dose) as compared with control plants. In well-watered plants, ABA reduced daily evapotranspiration (ET) for 5 days, after which there were no further ABA effects. Negative side effects of the ABA application were rate-dependent chlorosis of the lower leaves followed by leaf abscission. These studies demonstrate that ABA drenches rapidly close stomata, limit transpirational water loss, and can extend the shelf life of retail plants by up to 8 days, which exemplifies its potential as a commercially applied plant growth regulator.

2007 ◽  
Vol 7 ◽  
pp. 134-140 ◽  
Author(s):  
N. E. Grulke ◽  
E. Paoletti ◽  
R. L. Heath

We tested the effect of daytime chronic moderate ozone (O3) exposure, short-term acute exposure, and both chronic and acute O3exposure combined on nocturnal transpiration in California black oak and blue oak seedlings. Chronic O3exposure (70 ppb for 8 h/day) was implemented in open-top chambers for either 1 month (California black oak) or 2 months (blue oak). Acute O3exposure (~1 h in duration during the day, 120–220 ppb) was implemented in a novel gas exchange system that supplied and maintained known O3concentrations to a leaf cuvette. When exposed to chronic daytime O3exposure, both oaks exhibited increased nocturnal transpiration (without concurrent O3exposure) relative to unexposed control leaves (1.8× and 1.6×, black and blue oak, respectively). Short-term acute and chronic O3exposure did not further increase nocturnal transpiration in either species. In blue oak previously unexposed to O3, short-term acute O3exposure significantly enhanced nocturnal transpiration (2.0×) relative to leaves unexposed to O3. California black oak was unresponsive to (only) short-term acute O3exposure. Daytime chronic and/or acute O3exposures can increase foliar water loss at night in deciduous oak seedlings.


1995 ◽  
Vol 22 (3) ◽  
pp. 461 ◽  
Author(s):  
J Vadell ◽  
C Cabot ◽  
H Medrano

The effects of drought acclimation on the diurnal time courses of photosynthesis and related characters were studied in Trifolium subterraneum L. leaves during two consecutive late spring days. Leaf CO2 assimilation rate and transpiration rate followed irradiance variations in irrigated plants. Under drought, a bimodal pattern of leaf CO2 assimilation rate developed although stomatal conductance remained uniform and low. Instantaneous water-use efficiency was much higher in droughted plants during the early morning and late evening, while during the middle of the day it was close to the value of irrigated plants. Net carbon gain in plants under drought reached 40% of the carbon gain in irrigated plants with a significant saving of water (80%). Average data derived from midday values of leaf CO2 assimilation rates and instantaneous water-use efficiency did not provide good estimates of the daily carbon gain and water-use efficiency for droughted leaves. Coupled with the morphological changes as a result of acclimation to progressive drought, modifications of diurnal patterns of leaf gas exchange rates effectively contribute to a sustained carbon gain during drought. These modifications significantly improve water-use efficiency, mainly by enabling the plant to take advantage of morning and evening hours with high air humidity.


HortScience ◽  
2017 ◽  
Vol 52 (3) ◽  
pp. 441-449 ◽  
Author(s):  
Christopher Vincent ◽  
Diane Rowland ◽  
Bruce Schaffer

Primed acclimation (PA) is a regulated deficit irrigation (RDI) strategy designed to improve or maintain yield under subsequent drought stress. A previous study showed photosynthetic increases in papaya in response to a PA treatment. The present study was undertaken to test the duration of the PA effect when papaya plants were challenged with severe drought stress. Potted plants were stressed at 1, 2, and 3 months after conclusion of a PA treatment consisting of 3 weeks at soil water tension (SWT) of −20 kPa. Measurements included leaf gas exchange, root growth, and organ dry mass partitioning. PA did not reduce net CO2 assimilation (A) during the deficit period. At the end of the PA period, total dry matter accumulation per plant and for each organ was unaffected, but proportional dry matter partitioning to roots was favored. After resuming full irrigation, A increased and whole plant water use was more than doubled in PA-treated plants. However, water use and A of PA-treated plants decreased to reconverge with those of control plants by 6 weeks after the PA treatment. Over the course of the study, PA plants maintained lower stem height to stem diameter ratios, and shorter internode lengths. However, these changes did not improve photosynthetic response to any of the water-deficit treatments. We conclude that papaya exhibits some signs of stress memory, but that rapid short-term acclimation responses dominate papaya responses to soil water deficit.


2006 ◽  
Vol 86 (Special Issue) ◽  
pp. 1377-1381 ◽  
Author(s):  
J. P. Privé ◽  
L. Russell ◽  
A. LeBlanc

A field trial was conducted over two growing seasons in a Ginger Gold apple orchard in Bouctouche, New Brunswick, Canada to examine the impact of Surround (95% kaolin clay) on leaf gas exchange [net photosynthesis (Pn), stomatal conductance (gs), intercellular CO2 (Ci) and transpiration (E)]. In 2004, a greater rate of Pn and gs was achieved at the higher than at the lower frequency of Surround applications. This was particularly notable at leaf temperatures exceeding 35°C. In 2005, no significant (P ≤ 0.05) differences among leaf residue groupings [Trace (< 0.5 g m-2), Low (0.5 to 2 g m-2), and High (≥ 2 g m-2)] were found for the four leaf gas exchange parameters at leaf temperatures ranging from 25 to 40°C. It would appear that under New Brunswick commercial orchard conditions, the application of Surround favours or has no effect on leaf gas exchange. Key words: Surround, particle film, leaf physiology, photosynthesis, stomatal conductance, intercellular CO2, transpiration


2012 ◽  
Vol 169 (4) ◽  
pp. 379-386 ◽  
Author(s):  
Antonio Diaz-Espejo ◽  
María Victoria Cuevas ◽  
Miquel Ribas-Carbo ◽  
Jaume Flexas ◽  
Sebastian Martorell ◽  
...  

2021 ◽  
Author(s):  
Angelika Kübert ◽  
Kathrin Kühnhammer ◽  
Ines Bamberger ◽  
Erik Daber ◽  
Jason De Leeuw ◽  
...  

&lt;p&gt;Increasing drought in the tropics is a major threat to rainforests and can strongly harm plant communities. Understanding species-specific water use strategies to drought and the subsequent recovery is therefore important for estimating the risk to tropical rainforest ecosystems of drought. Conducting a large-scale long-term drought experiment in a model rainforest ecosystem (Biosphere 2 WALD project), we evaluated the role of plant physiological responses, above and below ground, in response to drought and subsequent recovery in five species (3 canopy species, 2 understory species). The model rainforest was exposed to a 9.5-week lasting drought. Severe drought was ended with a deep water pulse strongly enriched in &lt;sup&gt;2&lt;/sup&gt;H, which allowed us to distinguish between deep and shallow rooting plants, and subsequent rain (natural abundance range of &lt;sup&gt;2&lt;/sup&gt;H). We assessed plant physiological responses by leaf water potential, sap flow and high resolution monitoring of leaf gas exchange (concentrations and stable isotopes of H&lt;sub&gt;2&lt;/sub&gt;O and CO&lt;sub&gt;2&lt;/sub&gt;). Thereby, we could derive plant water uptake and leaf water use efficiency (WUE&lt;sub&gt;leaf&lt;/sub&gt;) in high temporal resolution, revealing short-term and long-term responses of plant individuals to drought and rewetting. The observed water use strategies of species and plants differed widely. No uniform response in assimilation (A) and transpiration (T) to drought was found for species, resulting in decreasing, relatively constant, or increasing WUE&lt;sub&gt;leaf&lt;/sub&gt; across plant individuals. While WUE&lt;sub&gt;leaf&lt;/sub&gt; of some plant individuals strongly decreased due to a breakdown in A, others maintained relatively high T and A and thus constant WUE&lt;sub&gt;leaf, &lt;/sub&gt;or increased WUE&lt;sub&gt;leaf&lt;/sub&gt; by decreasing T while keeping A relatively high. We expect that the observed plant-specific responses in A, T and WUE&lt;sub&gt;leaf&lt;/sub&gt; were strongly related to the plant individuals' access to soil water. We assume that plant individuals with constant WUE&lt;sub&gt;leaf&lt;/sub&gt; could maintain their leaf gas exchange due to access to water of deeper soil layers, while plants with increasing/decreasing WUE&lt;sub&gt;leaf&lt;/sub&gt; mainly depended on shallow soil water and only had limited or no access to deep soil water. We conclude that the observed physiological responses to drought were not only determined by species-specific water use strategies but also by the diverse strategies within species, mainly depending on the plant individuals' size and place of location. Our results highlight the plasticity of water use strategies beyond species-specific strategies and emphasize its importance for species&amp;#8217; survival in face of climate change and increasing drought.&lt;/p&gt;


2009 ◽  
Vol 45 (2) ◽  
pp. 189-198 ◽  
Author(s):  
F. P. GOMES ◽  
M. A. OLIVA ◽  
M. S. MIELKE ◽  
A-A. F. DE ALMEIDA ◽  
H. G. LEITE ◽  
...  

SUMMARYAbscisic acid (ABA) accumulation in leaves of drought-stressed coconut palms and its involvement with stomatal regulation of gas exchange during and after stress were investigated. Two Brazilian Green Dwarf coconut ecotypes from hot/humid and hot/dry environments were submitted to three consecutive drying/recovery cycles under greenhouse conditions. ABA accumulated in leaflets before significant changes in pre-dawn leaflet water potential (ΨPD) and did not recover completely in the two ecotypes after 8 days of rewatering. Stomatal conductance was influenced by ABA under mild drought and by ΨPD under severe drought. There were no significant differences between the ecotypes for most variables measured. However, the ecotype from a hot/dry environment showed higher water use efficiency after repeated cycles of water stress.


Sign in / Sign up

Export Citation Format

Share Document