Evidence that soil fertility controls the mixing of jack pine with trembling aspen

2011 ◽  
Vol 262 (6) ◽  
pp. 1054-1060 ◽  
Author(s):  
Samuel Royer-Tardif ◽  
Robert L. Bradley
2007 ◽  
Vol 22 (3) ◽  
pp. 163-170 ◽  
Author(s):  
Ryan J. Klos ◽  
G. Geoff Wang ◽  
Qing-Lai Dang ◽  
Ed W. East

Abstract Kozak's variable exponent taper equation was fitted for balsam poplar (Populus balsamifera L.), trembling aspen (Populus tremuloides Michx.), white spruce (Picea glauca [Moench] Voss), black spruce (Picea mariana [Mill.] B.S.P.), and jack pine (Pinus banksiana Lamb.) in Manitoba. Stem taper variability between two ecozones (i.e., Boreal Shield and Boreal Plains) were tested using the F-test. Regional differences were observed for trembling aspen, white spruce, and jack pine, and for those species, separate ecozone-specific taper equations were developed. However, the gross total volume estimates using the ecozone-specific equations were different from those of the provincial equations by only 2 percent. Although the regional difference in stem form was marginal within a province, a difference of approximately 7 percent of gross total volume estimation was found when our provincial taper equations were compared with those developed in Alberta and Saskatchewan. These results suggest that stem form variation increases with spatial scale and that a single taper equation for each species may be sufficient for each province.


2007 ◽  
Vol 37 (6) ◽  
pp. 1024-1033 ◽  
Author(s):  
P.Y. Bernier ◽  
M.B. Lavigne ◽  
E.H. Hogg ◽  
J.A. Trofymow

Measuring net primary productivity of trees requires the measurement of total wood production of branches. Recent work on balsam fir ( Abies balsamea ) has shown that branch-wood production can be estimated as a function of foliage production. We extend the analysis to four other species found in the Canadian forest: black spruce ( Picea mariana ), jack pine ( Pinus banksiana ), Douglas-fir ( Pseudotsuga menziesii ), and trembling aspen ( Populus tremuloides ). Results show that the ratio of annual branch-wood production to annual foliage production is about 1.0 for conifer species (between 0.86 and 1.12) and 0.56 for aspen during a nondrought year. An analysis using field measurements of litterfall and stem-diameter increment from selected forested sites shows that branch-wood production accounts for a smaller proportion of aboveground net primary productivity in trembling aspen (15%–20%) than in conifer species (25%). Also, litterfall capture of small branches (<1 cm diameter) accounts for only 33% of branch detritus production in conifers and 50% in trembling aspen. This study supports the use of an alternative method for estimating branch-wood production that reduces the potential bias in field estimates of net primary productivity.


Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 682
Author(s):  
Feng Xu ◽  
Maryamsadat Vaziriyeganeh ◽  
Janusz J. Zwiazek

Responses of trembling aspen (Populus tremuloides), jack pine (Pinus banksiana), and white spruce (Picea glauca) seedlings to root zone pH ranging from 5 to 9 were studied in sand culture in the presence of two mineral nutrition levels. After eight weeks of treatments, effects of pH on plant dry weights varied between the plant species and were relatively minor in white spruce. Higher nutrient supply significantly increased dry weights only in trembling aspen subjected to pH 5 treatment. There was little effect of pH and nutrition level on net photosynthesis and transpiration rates in white spruce and jack pine, but net photosynthesis markedly declined in aspen at high pH. Chlorophyll concentrations in young foliage decreased the most in trembling aspen and jack pine. The effects of high pH treatments on the concentrations of Mg, P, Ca, Mn, Zn, and Fe in young foliage varied between the plant species with no significant decreases of Fe and Zn recorded in trembling aspen and white spruce, respectively. This was in contrast to earlier reports from the studies carried out in hydroponic culture. The sand culture system that we developed could be a more suitable alternative to hydroponics to study plant responses to pH in the root zone. Plant responses to high pH appear to involve complex events with a likely contribution of nutritional effects and altered water transport processes.


2010 ◽  
Vol 40 (1) ◽  
pp. 37-47 ◽  
Author(s):  
Xavier Cavard ◽  
Yves Bergeron ◽  
Han Y.H. Chen ◽  
David Paré

This study investigates the potential of mixed forest stands as better aboveground carbon sinks than pure stands. According to the facilitation and niche complementarity hypotheses, we predict higher carbon sequestration in mature boreal mixedwoods. Aboveground carbon contents of black spruce ( Picea mariana (Mill.) Britton, Sterns, Poggenb.) and trembling aspen ( Populus tremuloides Michx.) mixtures were investigated in the eastern boreal forest, whereas jack pine ( Pinus banksiana Lamb.) and trembling aspen were used in the central boreal forest. No carbon gain was found in species mixtures; nearly pure trembling aspen stands contained the greatest amount of aboveground carbon, black spruce stands had the least, and mixtures were intermediate with amounts that could generally be predicted by linear interpolation with stem proportions. These results suggest that for aspen, the potentially detrimental effect of spruce on soils observed in other studies may be offset by greater light availability in mixtures. On the other hand, for black spruce, the potentially beneficial effects of aspen on soils could be offset by greater competition by aspen for nutrients and light. The mixture of jack pine and trembling aspen did not benefit any of these species while inducing a loss in trembling aspen carbon at the stand level.


2019 ◽  
pp. 297-307
Author(s):  
Yuqing Yang ◽  
Shongming Huang ◽  
Robert Vassov ◽  
Brad Pinno ◽  
Sophan Chhin

Climate-sensitive height–age models were developed for top height trees of trembling aspen (Populus tremuloides Michx.), jack pine (Pinus banksiana Lamb.), and white spruce (Picea glauca (Moench) Voss) in natural and reclaimed oil sands stands. We used stem analysis data collected from the Athabasca oil sands region in northern Alberta, Canada, and climate data generated by the ClimateWNA model. Height–age trajectories differed between top height trees in natural and reclaimed stands for jack pine and white spruce, but not for trembling aspen. At a given age, white spruce top height trees were taller and jack pine top height trees were shorter in reclaimed stands than those in natural stands, suggesting that it is easier to achieve similar forest productivity for oil sands sites reclaimed with white spruce stands than for sites reclaimed with jack pine stands. The principal climate variables were growing season (May to September) precipitation averaged over the previous 10 years for trembling aspen and jack pine and summer (June to August) precipitation averaged over the previous 10 years for white spruce. These variables had positive effects on the height–age trajectories.


2002 ◽  
Vol 32 (10) ◽  
pp. 1889-1892 ◽  
Author(s):  
Stan Vasiliauskas ◽  
Han YH Chen

Accurate determination of stand establishment ages is important in developing growth and yield models and in studying stand dynamics of fire-origin stands. The study objective was to determine time to reach breast height for black spruce (Picea mariana (Mill.) BSP), jack pine (Pinus banksiana Lamb.), trembling aspen (Populus tremuloides Michx.), and white birch (Betula papyrifera Marsh.) from fire origin stands under different site conditions in northeastern Ontario. Stands were randomly selected from burns with known fire dates. In each stand, three to six dominant and codominant trees of a selected species were cored at breast height (1.3 m above the ground level) to determine time to reach breast height. Trembling aspen and white birch did not differ for time to reach breast height after fire, taking 6 or 7 years, jack pine took marginally longer (8 years), whereas black spruce took the longest (18 years). While time to reach breast height did not vary among site conditions as described by soil texture and moisture regime, it was positively related to time since fire. The results of this study indicate that stand establishment dates and total tree ages can be substantially underestimated if breast height age is used as the stand age, resulting in misinterpretations of growth and yield and forest succession.


2006 ◽  
Vol 36 (9) ◽  
pp. 2331-2340 ◽  
Author(s):  
Suzanne Brais ◽  
David Paré ◽  
Cédric Lierman

To assess nutrient dynamics in decomposing logs of trembling aspen (Populus tremuloides Michx.), white birch (Betula papyrifera Marsh.), white spruce (Picea glauca (Moench) Voss), and jack pine (Pinus banksiana Lamb.), we monitored mass losses and changes in N and P contents in dead boles from a chronosequence of sites following stand-replacing disturbances. To assess the importance of wood decomposition to nutrient cycling, we compared net estimates of nutrient release from logs with net nutrient immobilization in live-tree biomass of stands as a function of time since disturbance. Mineralization rates were 0.060, 0.053, 0.038, and 0.020·year–1 for trembling aspen, white birch, white spruce, and jack pine logs, respectively. Trembling aspen boles released large quantities of N and P during the first year of decomposition (51 kg·ha–1 of N and 7 kg·ha–1 of P, assuming a bole volume of 150 m3·ha–1). White birch boles acted initially as a nutrient sink and delayed the release of immobilized nutrients until a period when the stand's net nutrient immobilization rates were highest. Jack pine boles appeared to be intermediate in terms of their contribution as a sink or a source of nutrients but, in mature stands, provided up to 40% of N and 26% of P immobilized annually in tree biomass. As pure stands of white spruce are rare in boreal Quebec, information on nutrient accumulation in white spruce stands was not available.


2012 ◽  
Vol 42 (8) ◽  
pp. 1456-1466 ◽  
Author(s):  
Suzanne Brais ◽  
Pascal Drouin

Decaying wood contribution to the heterogeneity of forest soils could depend on tree species and wood decay stage. The study was conducted in an 85-year-old trembling aspen ( Populus tremuloides Michx.) – jack pine ( Pinus banksiana Lamb.) forest in northwestern Quebec, Canada. Trees, snags, logs, and forest floor originating from wood buried within the forest floor (lignic FF) and from fine litter (alignic FF) were inventoried in fifteen 400 m2 plots (nine jack pine and six trembling aspen). Chemical properties of alignic and lignic FF and logs were measured and relative nutrient availability in the mineral soil assessed under logs and under lignic and alignic FF using PRS probes. No significant differences between forest covers were found for the proportion of C and nutrients contained in deadwood (snags, logs, and lignic FF) relative to tree biomass plus necromass (deadwood plus alignic FF) content. Lignic FF was characterized by a higher C/N ratio and exchangeable acidity than alignic FF and its nutrient concentrations were between those of alignic FF and logs. Differences in wood characteristics may explain some of the differences in forest floor properties observed between trembling aspen and jack pine. Nutrient availability in the mineral soil was affected by the overlaying materials and could reflect differences in the dynamics of individual nutrients.


Sign in / Sign up

Export Citation Format

Share Document