Non-volatile metabolite changes in low-temperature sausage stored at room temperature

2022 ◽  
Vol 31 ◽  
pp. 100805
Author(s):  
Hongjiao Han ◽  
Mohan Li ◽  
Yiming Liu ◽  
Haikun Yu ◽  
Xueyan Cao ◽  
...  
2021 ◽  
Author(s):  
Hongjiao Han ◽  
Mohan Li ◽  
Yiming Liu ◽  
Haikun Yu ◽  
Xueyan Cao ◽  
...  

2004 ◽  
Vol 52 (4) ◽  
pp. 479-487 ◽  
Author(s):  
Cs. Pribenszky ◽  
M. Molnár ◽  
S. Cseh ◽  
L. Solti

Cryoinjuries are almost inevitable during the freezing of embryos. The present study examines the possibility of using high hydrostatic pressure to reduce substantially the freezing point of the embryo-holding solution, in order to preserve embryos at subzero temperatures, thus avoiding all the disadvantages of freezing. The pressure of 210 MPa lowers the phase transition temperature of water to -21°C. According to the results of this study, embryos can survive in high hydrostatic pressure environment at room temperature; the time embryos spend under pressure without significant loss in their survival could be lengthened by gradual decompression. Pressurisation at 0°C significantly reduced the survival capacity of the embryos; gradual decompression had no beneficial effect on survival at that stage. Based on the findings, the use of the phenomena is not applicable in this form, since pressure and low temperature together proved to be lethal to the embryos in these experiments. The application of hydrostatic pressure in embryo cryopreservation requires more detailed research, although the experience gained in this study can be applied usefully in different circumstances.


2021 ◽  
Vol 23 (10) ◽  
pp. 6182-6189
Author(s):  
Dariusz M. Niedzwiedzki

Photophysical properties of N719 and Z907, benchmark Ru-dyes used as sensitizers in dye-sensitized solar cells, were studied by static and time-resolved optical spectroscopy at room temperature and 160 K.


2015 ◽  
Vol 1123 ◽  
pp. 73-77 ◽  
Author(s):  
Yohanes Edi Gunanto ◽  
K. Sinaga ◽  
B. Kurniawan ◽  
S. Poertadji ◽  
H. Tanaka ◽  
...  

The study of the perovskite manganites La0.47Ca0.53Mn1-xCuxO3 with x = 0, 0.06, 0.09, and 0.13 has been done. The magnetic structure was determined using high-resolution neutron scattering at room temperature and low temperature. All samples were paramagnetic at room temperature and antiferromagnetic at low temperature. Using the SQUID Quantum Design, the samples showed that the doping of the insulating antiferromagnetic phase La0.47Ca0.53MnO3 with Cu doping resulted in the temperature transition from an insulator to metal state, and an antiferromagnetic to paramagnetic phase. The temperature transition from an insulator to metal state ranged from 23 to 100 K and from 200 to 230 K for the transition from an antiferromagnetic to paramagnetic phase.


MRS Bulletin ◽  
2000 ◽  
Vol 25 (11) ◽  
pp. 21-30 ◽  
Author(s):  
Joel S. Miller ◽  
Arthur J. Epstein

Molecule-based magnets are a broad, emerging class of magnetic materials that expand the materials properties typically associated with magnets to include low density, transparency, electrical insulation, and low-temperature fabrication, as well as combine magnetic ordering with other properties such as photoresponsiveness. Essentially all of the common magnetic phenomena associated with conventional transition-metal and rare-earth-based magnets can be found in molecule-based magnets. Although discovered less than two decades ago, magnets with ordering temperatures exceeding room temperature, very high (∼27.0 kOe or 2.16 MA/m) and very low (several Oe or less) coercivities, and substantial remanent and saturation magnetizations have been achieved. In addition, exotic phenomena including photoresponsiveness have been reported. The advent of molecule-based magnets offers new processing opportunities. For example, thin-film magnets can be prepared by means of low-temperature chemical vapor deposition and electrodeposition methods.


1980 ◽  
Vol 58 (9) ◽  
pp. 867-874 ◽  
Author(s):  
Osvald Knop ◽  
Wolfgang J. Westerhaus ◽  
Michael Falk

Available evidence suggests that (1) the stretching frequencies of highly-bent hydrogen bonds decrease with increasing temperature, regardless of whether the bonds are static or dynamic in character, to a single acceptor or to several competing acceptors; and (2) departures from symmetric trifurcation (or bifurcation) toward asymmetric situations lower the stretching frequency. In further support of these criteria isotopic probe ion spectra between 10 K and room temperature have been obtained for taurine and for trigonal (NH4)2MF6 (M = Si, Ge, Sn, Ti). Evidence of a low-temperature transition at 100(10) K in trigonal (NH4)2SnF6 is presented, and existence of the previously reported transition at 38.6 K in trigonal (NH4)2SiF6 is confirmed. Symmetry changes associated with these transitions are discussed.


Visual purple is soluble and stable in a mixture of glycerol and water (3:1). At room temperature the spectrum of such a solution is identical with that of the aqueous solution. At — 73° C the peak of the absorption curve is higher and narrower than at room temperature, and it is shifted towards longer waves. The product of photodecomposition at — 73° C has a spectrum in ­ dependent of pH and is at low temperatures thermostable and photostable, but at room temperature it decomposes therm ally to indicator yellow. The primary product appears to be identical with transient orange. The quantum yields of the photoreaction at low and at room temperature are of the same order.


2006 ◽  
Vol 527-529 ◽  
pp. 717-720 ◽  
Author(s):  
Sashi Kumar Chanda ◽  
Yaroslav Koshka ◽  
Murugesu Yoganathan

A room temperature PL mapping technique was applied to establish the origin of resistivity variation in PVT-grown 6H SiC substrates. A direct correlation between the native defect-related PL and resistivity was found in undoped (V-free) samples. In vanadium-doped samples with low vanadium content, the resistivity showed a good correlation with the total PL signal consisting of contributions from both vanadium and native point defects. Well-known UD1 and UD3 levels were revealed by low-temperature PL spectroscopy. Some correlation was observed between these low-temperature PL signatures and the resistivity distribution.


Sign in / Sign up

Export Citation Format

Share Document