scholarly journals Overexpression of catalase delays G0/G1- to S-phase transition during cell cycle progression in mouse aortic endothelial cells

2009 ◽  
Vol 46 (12) ◽  
pp. 1658-1667 ◽  
Author(s):  
Ogbeyalu E. Onumah ◽  
George E. Jules ◽  
Yanfeng Zhao ◽  
LiChun Zhou ◽  
Hong Yang ◽  
...  
Nitric Oxide ◽  
2008 ◽  
Vol 18 (4) ◽  
pp. 241-255 ◽  
Author(s):  
Carlos Jorge R. Oliveira ◽  
Marli F. Curcio ◽  
Miriam S. Moraes ◽  
Maristela Tsujita ◽  
Luiz R. Travassos ◽  
...  

2008 ◽  
Vol 28 (10) ◽  
pp. 3190-3197 ◽  
Author(s):  
Angelique W. Whitehurst ◽  
Rosalyn Ram ◽  
Latha Shivakumar ◽  
Boning Gao ◽  
John D. Minna ◽  
...  

ABSTRACT Multiple molecular lesions in human cancers directly collaborate to deregulate proliferation and suppress apoptosis to promote tumorigenesis. The candidate tumor suppressor RASSF1A is commonly inactivated in a broad spectrum of human tumors and has been implicated as a pivotal gatekeeper of cell cycle progression. However, a mechanistic account of the role of RASSF1A gene inactivation in tumor initiation is lacking. Here we have employed loss-of-function analysis in human epithelial cells for a detailed investigation of the contribution of RASSF1 to cell cycle progression. We found that RASSF1A has dual opposing regulatory connections to G1/S phase cell cycle transit. RASSF1A associates with the Ewing sarcoma breakpoint protein, EWS, to limit accumulation of cyclin D1 and restrict exit from G1. Surprisingly, we found that RASSF1A is also required to restrict SCFβTrCP activity to allow G/S phase transition. This restriction is required for accumulation of the anaphase-promoting complex/cyclosome (APC/C) inhibitor Emi1 and the concomitant block of APC/C-dependent cyclin A turnover. The consequence of this relationship is inhibition of cell cycle progression in normal epithelial cells upon RASSF1A depletion despite elevated cyclin D1 concentrations. Progression to tumorigenicity upon RASSF1A gene inactivation should therefore require collaborating genetic aberrations that bypass the consequences of impaired APC/C regulation at the G1/S phase cell cycle transition.


2005 ◽  
Vol 168 (7) ◽  
pp. 1099-1108 ◽  
Author(s):  
Paola Defilippi ◽  
Arturo Rosso ◽  
Patrizia Dentelli ◽  
Cristina Calvi ◽  
Giovanni Garbarino ◽  
...  

We previously demonstrated that integrin-dependent adhesion activates STAT5A, a well known target of IL-3–mediated signaling. Here, we show that in endothelial cells the active β1 integrin constitutively associates with the unphosphorylated IL-3 receptor (IL-3R) β common subunit. This association is not sufficient for activating downstream signals. Indeed, only upon fibronectin adhesion is Janus Kinase 2 (JAK2) recruited to the β1 integrin–IL-3R complex and triggers IL-3R β common phosphorylation, leading to the formation of docking sites for activated STAT5A. These events are IL-3 independent but require the integrity of the IL-3R β common. IL-3 treatment increases JAK2 activation and STAT5A and STAT5B tyrosine and serine phosphorylation and leads to cell cycle progression in adherent cells. Expression of an inactive STAT5A inhibits cell cycle progression upon IL-3 treatment, identifying integrin-dependent STAT5A activation as a priming event for IL-3–mediated S phase entry. Consistently, overexpression of a constitutive active STAT5A leads to anchorage-independent cell cycle progression. Therefore, these data provide strong evidence that integrin-dependent STAT5A activation controls IL-3–mediated proliferation.


1999 ◽  
Vol 19 (4) ◽  
pp. 2690-2698 ◽  
Author(s):  
Michael Hinz ◽  
Daniel Krappmann ◽  
Alexandra Eichten ◽  
Andreas Heder ◽  
Claus Scheidereit ◽  
...  

ABSTRACT Nuclear factor kappa B (NF-κB) has been implicated in the regulation of cell proliferation, transformation, and tumor development. We provide evidence for a direct link between NF-κB activity and cell cycle regulation. NF-κB was found to stimulate transcription of cyclin D1, a key regulator of G1checkpoint control. Two NF-κB binding sites in the human cyclin D1 promoter conferred activation by NF-κB as well as by growth factors. Both levels and kinetics of cyclin D1 expression during G1phase were controlled by NF-κB. Moreover, inhibition of NF-κB caused a pronounced reduction of serum-induced cyclin D1-associated kinase activity and resulted in delayed phosphorylation of the retinoblastoma protein. Furthermore, NF-κB promotes G1-to-S-phase transition in mouse embryonal fibroblasts and in T47D mammary carcinoma cells. Impaired cell cycle progression of T47D cells expressing an NF-κB superrepressor (IκBαΔN) could be rescued by ectopic expression of cyclin D1. Thus, NF-κB contributes to cell cycle progression, and one of its targets might be cyclin D1.


1998 ◽  
Vol 111 (16) ◽  
pp. 2445-2453 ◽  
Author(s):  
C. Lammer ◽  
S. Wagerer ◽  
R. Saffrich ◽  
D. Mertens ◽  
W. Ansorge ◽  
...  

Cdc25 phosphatases play key roles in cell cycle progression by activating cyclin-dependent kinases. In human cells, cdc25 proteins are encoded by a multigene family, consisting of cdc25A, cdc25B and cdc25C. While cdc25A plays a crucial role at the G1/S phase transition, cdc25C is involved in the dephosphorylation and activation of the mitotic kinase, cdc2/cyclinB. In addition, cdc25C itself is regulated by cdc2/cyclinB which then creates a positive feedback loop that controls entry into mitosis. In this study we show that the activity of cdc25B appears during late S phase and peaks during G2 phase. Both in vitro and in vivo cdc25B is activated through phosphorylation during S-phase. Using a cell duplication, microinjection assay we show that ablation of cdc25B function by specific antibodies blocks cell cycle progression in Hs68 cells by inhibition of entry into mitosis. Cdc25B function neither plays a role in later stages of mitosis nor for the inititation of DNA replication. These results indicate that cdc25B is a mitotic regulator that might act as a ‘starter phosphatase’ to initiate the positive feedback loop at the entry into M phase.


1994 ◽  
Vol 127 (4) ◽  
pp. 1121-1127 ◽  
Author(s):  
S K Gupta ◽  
J P Singh

Modulation of endothelial cell proliferation and cell cycle progression by the "chemokine" platelet factor-4 (PF-4) was investigated. PF-4 inhibited DNA synthesis, as well as proliferation of endothelial cells derived from large and small blood vessels. Inhibition by PF-4 was independent of the type and the concentration of stimuli used for the induction of endothelial cell proliferation. Inhibition of cell growth by PF-4 was reversible. The effects of PF-4 were antagonized by heparin. Cell cycle analysis using [3H]thymidine pulse labeling during traverse of synchronous cells from G0/G1 to S phase revealed that addition of PF-4 during G1 phase completely abolished the entry of cells into S phase. In addition, PF-4 also inhibited DNA synthesis in cells that were already in S phase. In exponentially growing cells, addition of PF-4 resulted in an accumulation of > 70% of the cells in early S phase, as determined by FACS (Becton-Dickinson Immunocytometry Systems, Mountain View, CA). In cells synchronized in S phase by hydroxyurea and then released, addition of PF-4 promptly blocked further progression of DNA synthesis. These results demonstrate that in G0/G1-arrested cells, PF-4 inhibited entry of endothelial cells into S phase. More strikingly, our studies have revealed a unique mode of endothelial cell growth inhibition whereby PF-4 effectively blocked cell cycle progression during S phase.


2021 ◽  
Vol 22 (11) ◽  
pp. 5483
Author(s):  
Luisa F. Bustamante-Jaramillo ◽  
Celia Ramos ◽  
Cristina Martín-Castellanos

Cyclins and CDKs (Cyclin Dependent Kinases) are key players in the biology of eukaryotic cells, representing hubs for the orchestration of physiological conditions with cell cycle progression. Furthermore, as in the case of meiosis, cyclins and CDKs have acquired novel functions unrelated to this primal role in driving the division cycle. Meiosis is a specialized developmental program that ensures proper propagation of the genetic information to the next generation by the production of gametes with accurate chromosome content, and meiosis-specific cyclins are widespread in evolution. We have explored the diversification of CDK functions studying the meiosis-specific Crs1 cyclin in fission yeast. In addition to the reported role in DSB (Double Strand Break) formation, this cyclin is required for meiotic S-phase progression, a canonical role, and to maintain the architecture of the meiotic chromosomes. Crs1 localizes at the SPB (Spindle Pole Body) and is required to stabilize the cluster of telomeres at this location (bouquet configuration), as well as for normal SPB motion. In addition, Crs1 exhibits CDK(Cdc2)-dependent kinase activity in a biphasic manner during meiosis, in contrast to a single wave of protein expression, suggesting a post-translational control of its activity. Thus, Crs1 displays multiple functions, acting both in cell cycle progression and in several key meiosis-specific events.


Marine Drugs ◽  
2019 ◽  
Vol 17 (4) ◽  
pp. 205
Author(s):  
Su-Jin Jeong ◽  
Jeong-Wook Choi ◽  
Min-Kyeong Lee ◽  
Youn-Hee Choi ◽  
Taek-Jeong Nam

Spirulina is a type of filamentous blue-green microalgae known to be rich in nutrients and to have pharmacological effects, but the effect of spirulina on the small intestine epithelium is not well understood. Therefore, this study aims to investigate the proliferative effects of spirulina crude protein (SPCP) on a rat intestinal epithelial cells IEC-6 to elucidate the mechanisms underlying its effect. First, the results of wound-healing and cell viability assays demonstrated that SPCP promoted migration and proliferation in a dose-dependent manner. Subsequently, when the mechanisms of migration and proliferation promotion by SPCP were confirmed, we found that the epidermal growth factor receptor (EGFR) and mitogen-activated protein (MAPK) signaling pathways were activated by phosphorylation. Cell cycle progression from G0/G1 to S phase was also promoted by SPCP through upregulation of the expression levels of cyclins and cyclin-dependent kinases (Cdks), which regulate cell cycle progression to the S phase. Meanwhile, the expression of cyclin-dependent kinase inhibitors (CKIs), such as p21 and p27, decreased with SPCP. In conclusion, our results indicate that activation of EGFR and its downstream signaling pathway by SPCP treatment regulates cell cycle progression. Therefore, these results contribute to the research on the molecular mechanism for SPCP promoting the migration and proliferation of rat intestinal epithelial cells.


Sign in / Sign up

Export Citation Format

Share Document