scholarly journals Inhibiting inflammation and modulating oxidative stress in oxalate-induced nephrolithiasis with the Nrf2 activator dimethyl fumarate

2019 ◽  
Vol 134 ◽  
pp. 9-22 ◽  
Author(s):  
Jianning Zhu ◽  
Qing Wang ◽  
Cong Li ◽  
Yuchao Lu ◽  
Henglong Hu ◽  
...  
2017 ◽  
Vol 26 (14) ◽  
pp. 748-762 ◽  
Author(s):  
John D. Belcher ◽  
Chunsheng Chen ◽  
Julia Nguyen ◽  
Ping Zhang ◽  
Fuad Abdulla ◽  
...  

Biomolecules ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 271 ◽  
Author(s):  
Paulina Hennig ◽  
Gabriele Fenini ◽  
Michela Di Filippo ◽  
Hans-Dietmar Beer

The skin represents an indispensable barrier between the organism and the environment and is the first line of defense against exogenous insults. The transcription factor NRF2 is a central regulator of cytoprotection and stress resistance. NRF2 is activated in response to oxidative stress by reactive oxygen species (ROS) and electrophiles. These electrophiles oxidize specific cysteine residues of the NRF2 inhibitor KEAP1, leading to KEAP1 inactivation and, subsequently, NRF2 activation. As oxidative stress is associated with inflammation, the NRF2 pathway plays important roles in the pathogenesis of common inflammatory diseases and cancer in many tissues and organs, including the skin. The electrophile and NRF2 activator dimethyl fumarate (DMF) is an established and efficient drug for patients suffering from the common inflammatory skin disease psoriasis and the neuro-inflammatory disease multiple sclerosis (MS). In this review, we discuss possible molecular mechanisms underlying the therapeutic activity of DMF and other NRF2 activators. Recent evidence suggests that electrophiles not only activate NRF2, but also target other inflammation-associated pathways including the transcription factor NF-κB and the multi-protein complexes termed inflammasomes. Inflammasomes are central regulators of inflammation and are involved in many inflammatory conditions. Most importantly, the NRF2 and inflammasome pathways are connected at different levels, mainly antagonistically.


Antioxidants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 26
Author(s):  
Mikah S. Brandes ◽  
Jonathan A. Zweig ◽  
Anita Tang ◽  
Nora E. Gray

In Parkinson’s disease (PD), brain oxidative stress and mitochondrial dysfunction contribute to neuronal loss as well as motor and cognitive deficits. The transcription factor NRF2 has emerged as a promising therapeutic target in PD because it sits at the intersection of antioxidant and mitochondrial pathways. Here, we investigate the effects of modulating NRF2 activity in neurons isolated from a A53T α-synuclein (A53TSyn) mouse model of synucleinopathy. Embryonic hippocampal neurons were isolated from A53TSyn mice and their wild type (WT) littermates. Neurons were treated with either the NRF2 activator dimethyl fumarate (DMF) or the NRF2 inhibitor ML385. Reactive oxygen species (ROS), dendritic arborization and dendritic spine density were quantified. Mitochondrial bioenergetics were also profiled in these neurons. A53TSyn neurons had increased ROS and reduced basal and maximal mitochondrial respiration relative to WT neurons. A53TSyn neurons also displayed decreased dendritic arborization and reduced spine density. Treatment with DMF reduced ROS levels and improved both mitochondrial function and arborization, while inhibition of NRF2 with ML385 exacerbated these endpoints. Modulation of NRF2 activity had a significant effect on mitochondrial function, oxidative stress, and synaptic plasticity in A53TSyn neurons. These data suggest that NRF2 may be a viable target for therapeutic interventions in PD.


2021 ◽  
Vol 18 ◽  
Author(s):  
Yuan Li ◽  
Lan Chu ◽  
Chunfeng Liu ◽  
Zongyi Zha ◽  
Yuanlu Shu

Aim: This study investigated the protective effect of dimethyl fumarate (DMF) in rats by mediating GSK3-β/Nrf2 using the middle cerebral artery embolization reperfusion (MCAO/R) rat model. Background: After an acute ischemic stroke (AIS), oxidative stress occurs. Dimethyl fumarate (DMF), a nuclear factor-E2-related factor 2 (Nrf2) activator, approved by the US Food and Drug Administration (FDA), was observed to regulate the Nrf2 pathway by acting as an anti-oxidative stress agent; however, whether this agent is involved in inhibiting GSK-3β remains to be established. Methods: DMF model was used to explore the effects of GSK-3β on Nrf2 expression level, Nrf2-ARE binding activity and Nrf2/ARE downstream expression level of anti-oxidant stress protein in Cerebral ischemia-reperfusion injury (CIRI). 60 rats were randomly divided into Sham group, MCAO/R group, solvent control group (DMSO group) and DMF treatment group, with 15 rats in each group. The MCAO/R, DMSO and DMF groups were considered in the MCAO/R model using the modified thread embolization method. In contrast, the Sham group was only anaesthetized and disinfected, and tissue muscle was dissected without inserting suture emboli. DMF group was gavaged with 45mg/kg per day of DMF, DMSO control group was gavaged with DMSO of equal volume, while MCAO/R group was only modeled without any intragastric treatment. The rats were treated seven days after the operation, and a neurological function Longa score was estimated. The rats were sacrificed seven days later, and the infarct volume was assessed by TTC staining. Hematoxylin-eosin (HE) staining was used to observe the pathological changes in rat brain tissue. Nissl staining was used to observe the expression of neurons in the infarcted cortex. Western blotting (WB) was used to observe the protein expression levels of glycogen synthase kinase 3β(GSK-3β), nuclear factor E2-related factor 2 (Nrf2), downstream heme oxygenase 1 (HO1) and NADPH quinone oxidoreductase 1 (NQO1) in four groups. The expression levels of GSK-3β and Nrf2 in the four groups were observed by immunohistochemistry and immunofluorescence. Results: (1) The Longa score of the MCAO/R, DMSO and DMF groups was found to be higher compared to the Sham group, indicating successful operation. The Longa score of the DMF group was lower than that of the other three groups 4-7 days after surgery (P<0.05). (2) HE and Nissl staining showed that the DMF group had lower neuron necrosis and higher gliosis compared to the control groups. (3) TTC staining results showed that the infarct volume of the DMF group was significantly smaller than the MCAO/R and DMSO groups. (4) Protein results showed that the GSK-3β expression in the DMF group was lower than that in all groups, while the expression of Nrf2, HO1 and NQO1 was higher compared to other groups. Conclusion: DMF can reduce neurological deficits and infarct size in the MCAO/R model. The protective effect may be related to decreased GSK-3β expression and increased Nrf2 expression, which may play a role in anti-oxidative stress.


2021 ◽  
Vol 20 (9) ◽  
pp. 1861-1873
Author(s):  
Inas Saleh Almazari ◽  
Shada Youssef Elhayek

Purpose: To investigate the binding affinities of forty-one (41) National Cancer Institute (NCI)-generated compounds, to the Nrf2 ligand, and possible activation of Nrf2 in the MCF-7 cell line.Methods: To investigate the inhibition of the Nrf2/Keap1 complex, the MCF-7 cell line was treated with each of the 41 compounds, at a working concentration of 30 μM. The extent of Nrf2 activation and corresponding Nrf2/Keap1 complex inhibition was evaluated in terms of Nrf2 expression and its antioxidant-associated enzyme gamma-glutamylcysteine synthetase (GCS), using western blotanalysis.Results: Twenty-nine compounds out of the 41 targeted compounds activated GCS, and some showed comparable or greater activation capacity than the standard Nrf2 activator tBHQ. To confirm that the activation of GCS was mediated via Nrf2 activation, cell lysates were tested for their Nrf2 protein expression, and it was found that Nrf2 was activated by the examined compounds for more than 24 h, indicating that the effect of the chosen compounds were not transient.Conclusion: These results might be useful for identifying better targets for cytoprotection, and for oxidative stress alleviation through Nrf2 pathway activation. Further studies are required on the effects of these targets on the prevention and treatment of various oxidative stress disorders, including cancer.


2017 ◽  
Vol 363 (1) ◽  
pp. 114-125 ◽  
Author(s):  
John G. Yonchuk ◽  
Joseph P. Foley ◽  
Brian J. Bolognese ◽  
Gregory Logan ◽  
William E. Wixted ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Yasuhiro Nakagami

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a redox-sensitive transcription factor that binds to antioxidant response elements located in the promoter region of genes encoding many antioxidant enzymes and phase II detoxifying enzymes. Activation of Nrf2 functions is one of the critical defensive mechanisms against oxidative stress in many species. The retina is constantly exposed to reactive oxygen species, and oxidative stress is a major contributor to age-related macular diseases. Moreover, the resulting inflammation and neuronal degeneration are also related to other retinal diseases. The well-known Nrf2 activators, bardoxolone methyl and its derivatives, have been the subject of a number of clinical trials, including those aimed at treating chronic kidney disease, pulmonary arterial hypertension, and mitochondrial myopathies. Recent studies suggest that Nrf2 activation protects the retina from retinal diseases. In particular, this is supported by the finding that Nrf2 knockout mice display age-related retinal degeneration. Moreover, the concept has been validated by the efficacy of Nrf2 activators in a number of retinal pathological models. We have also recently succeeded in generating a novel Nrf2 activator, RS9, using a biotransformation technique. This review discusses current links between retinal diseases and Nrf2 and the possibility of treating retinal diseases by activating the Nrf2 signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document