Combining Current Knowledge on DNA Methylation-based age Estimation Towards the Development of A Superior Forensic DNA Intelligence Tool

Author(s):  
Anastasia Aliferi ◽  
Sudha Sundaram ◽  
David Ballard ◽  
Ana Freire-Aradas ◽  
Christopher Phillips ◽  
...  
Gene Reports ◽  
2021 ◽  
Vol 23 ◽  
pp. 101022
Author(s):  
Hiba S.G. Al-Ghanmy ◽  
Nihad A.M. Al-Rashedi ◽  
Asaad Y. Ayied

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Todd R. Robeck ◽  
Zhe Fei ◽  
Ake T. Lu ◽  
Amin Haghani ◽  
Eve Jourdain ◽  
...  

AbstractThe development of a precise blood or skin tissue DNA Epigenetic Aging Clock for Odontocete (OEAC) would solve current age estimation inaccuracies for wild odontocetes. Therefore, we determined genome-wide DNA methylation profiles using a custom array (HorvathMammalMethyl40) across skin and blood samples (n = 446) from known age animals representing nine odontocete species within 4 phylogenetic families to identify age associated CG dinucleotides (CpGs). The top CpGs were used to create a cross-validated OEAC clock which was highly correlated for individuals (r = 0.94) and for unique species (median r = 0.93). Finally, we applied the OEAC for estimating the age and sex of 22 wild Norwegian killer whales. DNA methylation patterns of age associated CpGs are highly conserved across odontocetes. These similarities allowed us to develop an odontocete epigenetic aging clock (OEAC) which can be used for species conservation efforts by provide a mechanism for estimating the age of free ranging odontocetes from either blood or skin samples.


2018 ◽  
Vol 33 ◽  
pp. 17-23 ◽  
Author(s):  
Jana Naue ◽  
Huub C.J. Hoefsloot ◽  
Ate D. Kloosterman ◽  
Pernette J. Verschure

2019 ◽  
Vol 19 (2) ◽  
pp. 411-425 ◽  
Author(s):  
Ricardo De Paoli‐Iseppi ◽  
Bruce E. Deagle ◽  
Andrea M. Polanowski ◽  
Clive R. McMahon ◽  
Joanne L. Dickinson ◽  
...  

2019 ◽  
Vol 26 (7) ◽  
pp. R415-R439 ◽  
Author(s):  
Carles Zafon ◽  
Joan Gil ◽  
Beatriz Pérez-González ◽  
Mireia Jordà

In recent years, cancer genomics has provided new insights into genetic alterations and signaling pathways involved in thyroid cancer. However, the picture of the molecular landscape is not yet complete. DNA methylation, the most widely studied epigenetic mechanism, is altered in thyroid cancer. Recent technological advances have allowed the identification of novel differentially methylated regions, methylation signatures and potential biomarkers. However, despite recent progress in cataloging methylation alterations in thyroid cancer, many questions remain unanswered. The aim of this review is to comprehensively examine the current knowledge on DNA methylation in thyroid cancer and discuss its potential clinical applications. After providing a general overview of DNA methylation and its dysregulation in cancer, we carefully describe the aberrant methylation changes in thyroid cancer and relate them to methylation patterns, global hypomethylation and gene-specific alterations. We hope this review helps to accelerate the use of the diagnostic, prognostic and therapeutic potential of DNA methylation for the benefit of thyroid cancer patients.


2020 ◽  
Vol 21 (5) ◽  
pp. 1818 ◽  
Author(s):  
Evelina Miele ◽  
Rita De Vito ◽  
Andrea Ciolfi ◽  
Lucia Pedace ◽  
Ida Russo ◽  
...  

Undifferentiated soft tissue sarcomas are a group of diagnostically challenging tumors in the pediatric population. Molecular techniques are instrumental for the categorization and differential diagnosis of these tumors. A subgroup of recently identified soft tissue sarcomas with undifferentiated round cell morphology was characterized by Capicua transcriptional receptor (CIC) rearrangements. Recently, an array-based DNA methylation analysis of undifferentiated tumors with small blue round cell histology was shown to provide a highly robust and reproducible approach for precisely classifying this diagnostically challenging group of tumors. We describe the case of an undifferentiated sarcoma of the abdominal wall in a 12-year-old girl. The patient presented with a voluminous mass of the abdominal wall, and multiple micro-nodules in the right lung. The tumor was unclassifiable with current immunohistochemical and molecular approaches. However, DNA methylation profiling allowed us to classify this neoplasia as small blue round cell tumor with CIC alterations. The patient was treated with neoadjuvant chemotherapy followed by complete surgical resection and adjuvant chemotherapy. After 22 months, the patient is disease-free and in good clinical condition. To put our experience in context, we conducted a literature review, analyzing current knowledge and state-of-the-art diagnosis, prognosis, and clinical management of CIC rearranged sarcomas. Our findings further support the use of DNA methylation profiling as an important tool to improve diagnosis of non-Ewing small round cell tumors.


2019 ◽  
Vol 20 (8) ◽  
pp. 1845 ◽  
Author(s):  
Vichithra R.B. Liyanage ◽  
Carl O. Olson ◽  
Robby M. Zachariah ◽  
James R. Davie ◽  
Mojgan Rastegar

Methyl CpG binding protein-2 (MeCP2) isoforms (E1 and E2) are important epigenetic regulators in brain cells. Accordingly, MeCP2 loss- or gain-of-function mutation causes neurodevelopmental disorders, including Rett syndrome (RTT), MECP2 duplication syndrome (MDS), and autism spectrum disorders (ASD). Within different types of brain cells, highest MeCP2 levels are detected in neurons and the lowest in astrocytes. However, our current knowledge of Mecp2/MeCP2 regulatory mechanisms remains largely elusive. It appears that there is a sex-dependent effect in X-linked MeCP2-associated disorders, as RTT primarily affects females, whereas MDS is found almost exclusively in males. This suggests that Mecp2 expression levels in brain cells might be sex-dependent. Here, we investigated the sex- and cell type-specific expression of Mecp2 isoforms in male and female primary neurons and astrocytes isolated from the murine forebrain. Previously, we reported that DNA methylation of six Mecp2 regulatory elements correlated with Mecp2 levels in the brain. We now show that in male brain cells, DNA methylation is significantly correlated with the transcript expression of these two isoforms. We show that both Mecp2 isoforms are highly expressed in male neurons compared to male astrocytes, with Mecp2e1 expressed at higher levels than Mecp2e2. Our data indicate that higher DNA methylation at the Mecp2 regulatory element(s) is associated with lower levels of Mecp2 isoforms in male astrocytes compared to male neurons.


2019 ◽  
Vol 65 (2) ◽  
pp. 465-470 ◽  
Author(s):  
Helena Correia Dias ◽  
Cristina Cordeiro ◽  
Francisco Corte Real ◽  
Eugénia Cunha ◽  
Licínio Manco

2018 ◽  
Vol 159 (1) ◽  
pp. 3-15 ◽  
Author(s):  
Krisztina Andrea Szigeti ◽  
Orsolya Galamb ◽  
Alexandra Kalmár ◽  
Barbara Kinga Barták ◽  
Zsófia Brigitta Nagy ◽  
...  

Abstract: Besides the genetic research, increasing number of scientific studies focus on epigenetic phenomena – such as DNA methylation – regulating the expression of genes behind the phenotype, thus can be related to the pathomechanism of several diseases. In this review, we aim to summarize the current knowledge about the evolutionary appearance and functional diversity of DNA methylation as one of the epigenetic mechanisms and to demonstrate its role in aging and cancerous diseases. DNA methylation is also characteristic/also appear to prokaryotes, eukaryotes and viruses. In prokaryotes and viruses, it provides defence mechanisms against extragenous DNA. DNA methylation in prokaryotes plays a significant role in the regulation of transcription, the initiation of replication and in Dam-directed mismatch repair. In viruses, it participates not only in defence mechanisms, but in the assembly of capsids as well which is necessary for spreading. In eukaryotes, DNA methylation is involved in recombination, replication, X chromosome inactivation, transposon control, regulation of chromatin structure and transcription, and it also contributes to the imprinting phenomenon. Besides the above-mentioned aspects, DNA methylation also has an evolutionary role as it can change DNA mutation rate. Global hypomethylation appearing during aging and in cancerous diseases can lead to genetic instablility and spontaneous mutations through its role in the regulation of transposable elements. Local hypermethylated alterations such as hypermethylation of SFRP1, SFRP2, DKK1 and APC gene promoters can cause protein expression changes, thus contribute to development of cancer phenotype. DNA methylation alterations during aging in cancerous diseases support the importance of epigenetic research focusing on disease diagnostics and prognostics. Orv Hetil. 2018; 159(1): 3–15.


2018 ◽  
Vol 1 (2) ◽  
pp. 41-50 ◽  
Author(s):  
Shilpi Gupta ◽  
Prabhat Kumar ◽  
Jayant Maini ◽  
Harsimrut Kaur

Head and neck cancers (HNCs) are the most prevalent and aggressive type of cancers. Genetic, epigenetic, environmental and viral risk-factors are associated with HNC carcinogenesis. Persistent infection of oncogenic human papillomaviruses (HR-HPVs) represent distinct biological, molecular and epigenetic entities in HNCs. There are three main epigenetic mechanisms that regulate transcription, these are DNA methylation, histone modifications and alteration in non-coding RNA networks, which can dissected to identify innovative and accurate epigenetic biomarkers for diagnosis and prognosis of HNC patients. Due to the lacunae of accurate distinctive biomarkers for the definite diagnosis of HNC, the identification of predictive epigenetic markers is necessary that might modify or increase HNC patient’s survival. In this mini review, we briefly summarize the current knowledge of different epigenetic biomarkers in HNC.


Sign in / Sign up

Export Citation Format

Share Document