New European Drive Cycle (NEDC) simulation of a passenger car with a HCCI engine: Emissions and fuel consumption results

Fuel ◽  
2013 ◽  
Vol 111 ◽  
pp. 733-739 ◽  
Author(s):  
Augusto F. Pacheco ◽  
Mario E.S. Martins ◽  
Hua Zhao
2018 ◽  
Author(s):  
Adriaan Smuts Van Niekerk ◽  
Benjamin Drew ◽  
Neil Larsen ◽  
Peter Kay

To reduce the amount of carbon dioxide released from transportation the EU has implemented legislation to mandate the renewable content of petrol and diesel fuels. However, due to the complexity of the combustion process the addition of renewable content, such as biodiesel and ethanol, can have a detrimental effect on other engine emissions. In particular the engine load can have a significant impact on the emissions. Most research that have studied this issue are based on steady state tests, that are unrealistic of real world driving and will not capture the difference between full and part loads. This study aims to address this by investigating the effect of renewable fuel blends of diesel, biodiesel and ethanol on the emissions of a compression ignition engine tested over the World Harmonised Light Vehicle Test Procedure (WLTP). Diesel, biodiesel and ethanol were blended to form binary and ternary blends, the ratios were determined by Design of Experiments (DoE). The total amount of emissions for CO, CO2 and NOx as well as the fuel consumption, were measured from a 2.4 liter compression ignition (CI) engine running over the WLTP drive cycle. The results depicted that percentages smaller than 10 % of ethanol in the fuel blend can reduce CO emissions, CO2 emissions as well as NOx emissions, but increases fuel consumption with increasing percentage of ethanol in the fuel blend. Blends with biodiesel resulted in minor increases in CO emissions due to the engine being operated in the low and medium load regions over the WLTP. CO2 emissions as well as NOx emissions increased as a result of the high oxygen content in biodiesel which promoted better combustion. Fuel consumption increased for blends with biodiesel as a result from biodiesel's lower heating value. All the statistical models describing the engine responses were significant and this demonstrated that a mixture DoE is suitable to quantify the effect of fuel blends on an engine's emissions response. An optimised ternary blend of B2E9 was found to be suitable as a 'drop in' fuel that will reduce harmful emissions of CO emissions by approximately 34 %, NOx emissions by 10 % and CO2 emissions by 21 % for transient engine operating scenarios such as the WLTP drive cycle.


Author(s):  
Rencheng Zhu ◽  
Jingnan Hu ◽  
Xiaofeng Bao ◽  
Liqiang He ◽  
Lei Zu ◽  
...  

Author(s):  
Mirko Baratta ◽  
Roberto Finesso ◽  
Daniela Misul ◽  
Ezio Spessa ◽  
Yifei Tong ◽  
...  

The environmental concerns officially aroused in 1970s made the control of the engine emissions a major issue for the automotive industry. The corresponding reduction in fuel consumption has become a challenge so as to meet the current and future emission legislations. Given the increasing interest retained by the optimal use of a Variable Valve Actuation (VVA) technology, the present paper investigates into the potentials of combining the VVA solution to CNG fuelling. Experiments and simulations were carried out on a heavy duty 6-cylinders CNG engine equipped with a turbocharger displaying a twin-entry waste-gate-controlled turbine. The analysis aimed at exploring the potentials of the Early Intake Valve Closure (EIVC) mode and to identify advanced solutions for the combustion management as well as for the turbo-matching. The engine model was developed within the GT-Power environment and was finely tuned to reproduce the experimental readings under steady state operations. The 0D-1D model was hence run to reproduce the engine operating conditions at different speeds and loads and to highlight the effect of the VVA on the engine performance as well as on the fuel consumption and engine emissions. Pumping losses proved to reduce to a great extent, thus decreasing the brake specific fuel consumption (BSFC) with respect to the throttled engine. The exhaust temperature at the turbine inlet was kept to an almost constant value and minor variations were allowed. This was meant to avoid an excessive worsening in the TWC working conditions, as well as deterioration in the turbocharger performance during load transients. The numerical results also proved that full load torque increases can be achieved by reducing the spark advance so that a higher enthalpy is delivered to the turbocharger. Similar torque levels were also obtained by means of Early Intake Valve Closing strategy. For the latter case, negligible penalties in the fuel consumption were detected. Moreover, for a given combustion phasing, the IVC angle directly controls the mass-flow rate and thus the torque. On the other hand, a slight dependence on the combustion phasing can be detected at part load. Finally, the simulations assessed for almost constant fuel consumption for a wide range of IVC and SA values. Specific attention was also paid to the turbocharger group functioning and to its correct matching to the engine working point. The simulations showed that the working point on the compressor map can be optimized by properly setting the spark advance (SA) as referred to the adopted intake-valve closing angle. It is anyhow worth observing that the engine high loads set a constraint deriving from the need to meet the limits on the peak firing pressure (PFP), thus limiting the possibility to optimize the working point once the turbo-matching is defined.


Author(s):  
Midhun Muraleedharan ◽  
◽  
Amitabh Das ◽  
Dr. Mohammad Rafiq Agrewale ◽  
Dr. K.C. Vora ◽  
...  

Hybridization is important to obtain the advantages of both the engine and motor as the sources of propulsion. This paper discusses the effect of hybridization of powertrain on vehicle performance. The Hybrid architectures are differentiated on the basis percentage of power dependency on the engine and motor. Passenger car with hybridization ratios of 20%, 40%, 60%, 80% and 100% are modelled on MATLAB/Simulink using the backward facing approach with the engine and motor specifications remaining constant. The hybridizations ratios and the energy consumption in terms of fuel and battery energy are obtained from the model and compared. Neural network is implemented to determine the fuel consumption. The outputs can be used by a system designer to determine a desirable hybridization factor based on the requirements dictated by the specific application.


2021 ◽  
Vol 12 (1) ◽  
pp. 45-50
Author(s):  
Jan Szybka ◽  
Sylwester Pabian

The APEKS method was developed in the 1970s. It has a wide range of applications for making a decision. The article describes the APEKS method, which is a multi-criteria method and consists of 10 steps. The application of this method was presented in the example of car selection. The problem of choosing a passenger car was analyzed taking into account 6 evaluation criteria: fuel consumption, power, price, annual operating costs, aesthetic values, and utility values. Following the APEKS method, the analysis was completed with the selection of the best variant, using the forced decision method, consisting of an individual comparison of all criteria with one another. The APEKS variant is used for this, which has all the best features of the variants to choose from. This indicates that APEKS is an idealized and fictional variant.


Author(s):  
Peter Vasquez ◽  
Edwin Quiros ◽  
Gerald Jo Denoga ◽  
Robert Michael Corpus ◽  
Robert James Lomotan

Abstract Efforts to mitigate climate change include lowering of greenhouse gas emissions by reducing fuel consumption in the transport sector. Various vehicle technologies and interventions for better fuel economy eventually require chassis dynamometer testing using drive cycles for validation. As such, the methodology to generate these drive cycles from on-road data should produce drive cycles that closely represent actual on-road driving from the fuel economy standpoint. This study presents a comparison of the fuel economy measured from a drive cycle developed using road load energy as a major assessment criterion and the actual on-road fuel economy of a 2013 Isuzu Crosswind utility vehicle used in the UV Express transport fleet in Metro Manila, Philippines. In this approach to drive cycle construction from on-road data, the ratio of the total road load energy of the generated drive cycle to that of the on-road trip is made the same ratio as their respective durations. On-road velocity and fuel consumption were recorded as the test vehicle traversed the 42.5 km. Sucat to Lawton route and vice versa in Metro Manila. Gathered data were processed to generate drive cycles using the modified Markov Chain approach. Three drive cycles of decreasing duration, based on the practicality of testing on a chassis dynamometer, were generated using three arbitrary data compression ratios. These drive cycles were tested using the same vehicle on the chassis dynamometer and compared with the on-road data using road load energy, fuel economy, average speed, and maximum acceleration. For the 893-seconds drive cycle generated, the road load energy error was 3.93% and fuel economy difference of 1.14%. For the 774-seconds cycle generated, the road load energy error was 4.34% and fuel economy difference was 0.91%. For the 664-seconds drive cycle, the road load energy error was 3.68% and fuel economy difference was 0.91%. On-road fuel economy for the 42.5-km. route averaged over nine round trips was 8.785 km/L. Based on the results, the road load energy criterion approach of drive cycle construction methodology can generate drive cycles which can very closely estimate on-road fuel economy.


Author(s):  
M S Mustaqim ◽  
M S M Hashim ◽  
A B Shahriman ◽  
Z M Razlan ◽  
I Zunaidi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document