Blending efficiency of Reclaimed Asphalt Pavement: An approach utilizing rheological properties and molecular weight distributions

Fuel ◽  
2014 ◽  
Vol 135 ◽  
pp. 63-68 ◽  
Author(s):  
Benjamin F. Bowers ◽  
Jason Moore ◽  
Baoshan Huang ◽  
Xiang Shu
Author(s):  
Jan F. B ranthaver ◽  
Raymond E. Robertson ◽  
John J. Duvall

It is known that the rheological properties of mixtures of organic compounds are functions of molecular weight distributions. However, with respect to asphalts, which are composed of many different compounds and compound types, molecular weights are difficult to measure. This difficulty occurs because the molecular associations that form are held together by forces of varying strengths and are partly broken up by heat and solvents. In theory, the strongest molecular associations in asphalts should have the greatest influence on the rheological properties of asphalts. These associations would be expected to be the major contributors to the asphalt's behaving as if it were a relatively high molecular weight material. Asphalt molecular associations should be isolatable by means of size exclusion chromatography. Several fractions of varying molecular weights (measured by membrane osmometry and vapor phase osmometry) were isolated from Strategic Highway Research Program (SHRP) asphalt AAD-1 by preparative size exclusion chromatography. Molecular weights of these fractions ranged from approximately 2,000 daltons to over 40,000 daltons. When these fractions were independently mixed with asphalt AAD-1 solvent moiety, mixtures were obtained whose rheological properties were a function of the molecular weights and concentrations of the associated materials. These results support the microstructural model of asphalt proposed during SHRP. The results also suggest that the unusual rheological properties of some asphalts may be explained by measuring molecular weight distributions. This type of information may be useful for modification of asphalts to achieve desirable rheological properties.


2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Mohammad Ashiqur Rahman ◽  
Rouzbeh Ghabchi ◽  
Musharraf Zaman ◽  
Syed Ashik Ali

AbstractDespite significant economic and environmental benefits, performance of warm mix asphalt (WMA) containing reclaimed asphalt pavement (RAP) remains a matter of concern. Among the current WMA technologies, the plant foaming technique (called “foamed WMA” in this study) has gained the most attention, since it eliminates the need for chemical additives. In the present study, the laboratory performance, namely rutting and moisture-induced damage potential of foamed WMA containing RAP were evaluated and compared with those of similar hot mix asphalt (HMA) containing identical amount of RAP. Dynamic modulus, Hamburg wheel tracking (HWT) and flow number tests were performed to assess the rutting resistance of the mixes. Also, stripping inflection point from HWT tests and tensile strength ratio after AASHTO T 283 and moisture induced sensitivity test (MIST) conditioning were used to evaluate the moisture-induced damage of asphalt mixes. It was found that MIST conditioning effectively simulates the moisture-induced damage and can capture the propensity of asphalt mixes to moisture damage more distinctly compared to AASHTO T 283 method due to application of cyclic loadings. The foamed WMA was found to exhibit higher rutting and moisture-induced damage potential due to lower mixing and compaction temperatures compared to HMA. However, the increase in RAP content was found to reduce rutting and moisture-induced damage potential for WMA. Therefore, the lower stiffness of foamed WMA may be compensated with the addition of stiffer binder from RAP.


Sign in / Sign up

Export Citation Format

Share Document