scholarly journals Direct conversion of glucose to 5-hydroxymethylfurfural using a mixture of niobic acid and niobium phosphate as a solid acid catalyst

Fuel ◽  
2017 ◽  
Vol 210 ◽  
pp. 67-74 ◽  
Author(s):  
Mariana N. Catrinck ◽  
Emerson S. Ribeiro ◽  
Robson S. Monteiro ◽  
Rogério M. Ribas ◽  
Márcio H.P. Barbosa ◽  
...  
2013 ◽  
Vol 291-294 ◽  
pp. 312-315 ◽  
Author(s):  
Chun Chang ◽  
Bo Li ◽  
Gui Zhuan Xu ◽  
Pei Qin Sun

Eethyl levulinate (EL) can be produced by direct conversion of glucose in ethanol medium. Both sulfuric acid and solid acid catalyst (USY) can be used as effective acid catalyst. The maximum EL yields were almost same. However, the usage of USY is helpful to limit the diethyl ether (DEE) production efficiently for recycling of ethanol. In ethanol/water mixed medium, water addition has significant effect on the products distribution. EL yield decreased obviously in water-rich medium. Meanwhile, the amount of DEE decreased with the increase of water addition. However, water addition has the opposite effect on the humic solid formation, and more humic solid can be formed in water-rich medium.


Catalysts ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 126 ◽  
Author(s):  
Morongwa Songo ◽  
Richard Moutloali ◽  
Suprakas Ray

A TiO2-Carbon (TiO2C) composite was prepared using the microwave-assisted method and sulfonated using fuming sulfuric acid to produce a TiO2C solid acid catalyst. The prepared solid acid catalyst was characterised using scanning electron microscopy, Brunauer-Emmett-Teller analysis, Fourier transform infrared spectroscopy, and X-ray diffraction. Crystallinity analysis confirmed that TiO2C has an anatase structure, while analysis of its morphology showed a combination of spheres and particles with a diameter of 50 nm. The TiO2C solid acid catalyst was tested for use in the catalytic dehydration of fructose to 5-hydroxymethylfurfural (5-HMF). The effect of reaction time, reaction temperature, catalyst dosage, and solvent were investigated against the 5-HMF yield. The 5-HMF yield was found to be 90% under optimum conditions. The solid acid catalyst is very stable and can be reused for four catalytic cycles. Hence, the material has great potential for use in industrial applications and can be used for the direct conversion of fructose to 5-HMF because of its high activity and high reusability.


1990 ◽  
Vol 8 (1) ◽  
pp. 123-132 ◽  
Author(s):  
Taka-aki Hanaoka ◽  
Kazuhiko Takeuchi ◽  
Takehiko Matsuzaki ◽  
Yoshihiro Sugi

Author(s):  
Charishma Venkata Sai Anne ◽  
Karthikeyan S. ◽  
Arun C.

Background: Waste biomass derived reusable heterogeneous acid based catalysts are more suitable to overcome the problems associated with homogeneous catalysts. The use of agricultural biomass as catalyst for transesterification process is more economical and it reduces the overall production cost of biodiesel. The identification of an appropriate suitable catalyst for effective transesterification will be a landmark in biofuel sector Objective: In the present investigation, waste wood biomass was used to prepare a low cost sulfonated solid acid catalyst for the production of biodiesel using waste cooking oil. Methods: The pretreated wood biomass was first calcined then sulfonated with H2SO4. The catalyst was characterized by various analyses such as, Fourier-transform infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS) and X-ray diffraction (XRD). The central composite design (CCD) based response surface methodology (RSM) was applied to study the influence of individual process variables such as temperature, catalyst load, methanol to oil molar ration and reaction time on biodiesel yield. Results: The obtained optimized conditions are as follows: temperature (165 ˚C), catalyst loading (1.625 wt%), methanol to oil molar ratio (15:1) and reaction time (143 min) with a maximum biodiesel yield of 95 %. The Gas chromatographymass spectrometry (GC-MS) analysis of biodiesel produced from waste cooking oil was showed that it has a mixture of both monounsaturated and saturated methyl esters. Conclusion: Thus the waste wood biomass derived heterogeneous catalyst for the transesterification process of waste cooking oil can be applied for sustainable biodiesel production by adding an additional value for the waste materials and also eliminating the disposable problem of waste oils.


RSC Advances ◽  
2021 ◽  
Vol 11 (23) ◽  
pp. 14071-14078
Author(s):  
Xi-Que Wu ◽  
Pan-Dao Liu ◽  
Qun Liu ◽  
Shu-Ying Xu ◽  
Yu-Cang Zhang ◽  
...  

A new strategy was developed to produce cellulose nanofibrils and films from elephant grass using deep eutectic solvents and a recyclable solid acid catalyst with assistance of ultrasonic disintegration and a suction filtration film forming method.


2021 ◽  
Author(s):  
Manickam Selvaraj ◽  
Mohammed A. Assiri ◽  
Hari Singh ◽  
Jimmy Nelson Appaturi ◽  
Subrahmanyam Ch ◽  
...  

Prins cyclization of styrene (SE) with paraformaldehyde (PFCHO) was conducted with mesoporous ZnAlMCM-41 catalysts for synthesis of 4-phenyl-1,3-dioxane (4-PDO) under a liquid phase heterogeneous catalytic method. For comparison study, the...


Catalysts ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 21
Author(s):  
Davide Rigo ◽  
Nadia Alessandra Carmo Dos Santos ◽  
Alvise Perosa ◽  
Maurizio Selva

An unprecedented two-step sequence was designed by combining batch and continuous flow (CF) protocols for the upgrading of two aminodiol regioisomers derived from glycerol, i.e., 3-amino-1,2-propanediol and 2-amino-1,3-propanediol (serinol). Under batch conditions, at 80–90 °C, both substrates were quantitatively converted into the corresponding amides through a catalyst-free N-acetylation reaction mediated by an innocuous enol ester as isopropenyl acetate (iPAc). Thereafter, at 30–100 °C and 1–10 atm, the amide derivatives underwent a selective CF-acetalisation in the presence of acetone and a solid acid catalyst, to afford the double-functionalized (amide-acetal) products.


Sign in / Sign up

Export Citation Format

Share Document