A new burner for oxy-fuel combustion of hydrogen containing low-calorific value syngases: An experimental and numerical study

Fuel ◽  
2019 ◽  
Vol 256 ◽  
pp. 115990 ◽  
Author(s):  
Mustafa Ilbas ◽  
Abdulkadir Bektas ◽  
Serhat Karyeyen
2021 ◽  
pp. 146808742110222
Author(s):  
Xiang Li ◽  
Yiqiang Pei ◽  
Zhijun Peng ◽  
Tahmina Ajmal ◽  
Khaqan-Jim Rana ◽  
...  

In order to decrease Carbon Dioxide (CO2) emissions, Oxy-Fuel Combustion (OFC) technology with Carbon Capture and Storage (CCS) is being developed in Internal Combustion Engine (ICE). In this article, a numerical study about the effects of intake charge on OFC was conducted in a dual-injection. Spark Ignition (SI) engine, with Gasoline Direct Injection (GDI), Port Fuel Injection (PFI) and P-G (50% PFI and 50% GDI) three injection strategies. The results show that under OFC with fixed Oxygen Mass Fraction (OMF) and intake temperature, the maximum Brake Mean Effective Pressure (BMEP) is each 5.671, 5.649 and 5.646 bar for GDI, P-G and PFI strategy, which leads to a considerable decrease compared to Conventional Air Combustion (CAC). [Formula: see text], [Formula: see text] and [Formula: see text] of PFI are the lowest among three injection strategies. With intake temperature increases from 298 to 378 K, the reduction of BMEP can be up to 12.68%, 12.92% and 12.75% for GDI, P-G and PFI, respectively. Meantime, there is an increase of about 3% in Brake Specific Fuel Consumption (BSFC) and Brake Specific Oxygen Consumption (BSOC). Increasing OMF can improve the performance of BMEP and BSFC, and the trend is more apparent under GDI strategy. Besides, an increasing tendency can be observed for cylinder pressure and in-cylinder temperature under all injection strategies with the increase of OMF.


2018 ◽  
Vol 8 (12) ◽  
pp. 2667
Author(s):  
Antonio Mariani ◽  
Andrea Unich ◽  
Mario Minale

The paper describes a numerical study of the combustion of hydrogen enriched methane and biogases containing hydrogen in a Controlled Auto Ignition engine (CAI). A single cylinder CAI engine is modelled with Chemkin to predict engine performance, comparing the fuels in terms of indicated mean effective pressure, engine efficiency, and pollutant emissions. The effects of hydrogen and carbon dioxide on the combustion process are evaluated using the GRI-Mech 3.0 detailed radical chain reactions mechanism. A parametric study, performed by varying the temperature at the start of compression and the equivalence ratio, allows evaluating the temperature requirements for all fuels; moreover, the effect of hydrogen enrichment on the auto-ignition process is investigated. The results show that, at constant initial temperature, hydrogen promotes the ignition, which then occurs earlier, as a consequence of higher chemical reactivity. At a fixed indicated mean effective pressure, hydrogen presence shifts the operating range towards lower initial gas temperature and lower equivalence ratio and reduces NOx emissions. Such reduction, somewhat counter-intuitive if compared with similar studies on spark-ignition engines, is the result of operating the engine at lower initial gas temperatures.


2021 ◽  
pp. 179011
Author(s):  
Linglong Wang ◽  
Xuecheng Wu ◽  
Xiang Gao ◽  
Yingchun Wu ◽  
Kefa Cen

2014 ◽  
Vol 113 ◽  
pp. 722-733 ◽  
Author(s):  
Binbin Yang ◽  
Mingfa Yao ◽  
Wai K. Cheng ◽  
Yu Li ◽  
Zunqing Zheng ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1706
Author(s):  
Furqan Tahir ◽  
Haider Ali ◽  
Ahmer A.B. Baloch ◽  
Yasir Jamil

Greenhouse gas emissions from the combustion of fossil fuels pose a serious threat to global warming. Mitigation measures to counter the exponential growth and harmful impact of these gases on the environment require techniques for the reduction and capturing of carbon. Oxy-fuel combustion is one such effective method, which is used for the carbon capture. In the present work, a numerical study was carried out to analyze characteristics of oxy-fuel combustion inside a porous plate reactor. The advantage of incorporating porous plates is to control local oxy-fuel ratio and to avoid hot spots inside the reactor. A modified two-steps reaction kinetics model was incorporated in the simulation for modeling of methane air-combustion and oxy-fuel combustion. Simulations were performed for different oxidizer ratios, mass flow rates, and reactor heights. Results showed that that oxy-combustion with an oxidizer ratio (OR) of 0.243 could have the same adiabatic flame temperature as that of air-combustion. It was found that not only does OR need to be changed, but also flow field or reactor dimensions should be changed to achieve similar combustion characteristics as that of air-combustion. Fifty percent higher mass flow rates or 40% reduction in reactor height may achieve comparable outlet temperature to air-combustion. It was concluded that not only does the oxidizer ratio of oxy-combustion need to be changed, but the velocity field is also required to be matched with air-combustion to attain similar outlet temperature.


Sign in / Sign up

Export Citation Format

Share Document