scholarly journals Alcohol flexible HD single cylinder diesel engine tests with separate dual high pressure direct fuel injection

Fuel ◽  
2021 ◽  
Vol 294 ◽  
pp. 120478
Author(s):  
Michael Saccullo ◽  
Andreas Nygren ◽  
Timothy Benham ◽  
Ingemar Denbratt
Author(s):  
Ke Zhang ◽  
Zhifeng Xie ◽  
Ming Zhou

Single-cylinder diesel engines usually employ mechanically actuated or time-type electrically controlled fuel injection systems. But due to the lack of flexibility to provide high pressure and fully varying injection parameters, fuel efficiency and emissions are poor. Although modern multi-cylinder engines have employed high pressure common rail fuel injection system for a long time, this technology has not been demonstrated in single-cylinder diesel engines. Due to the small installation space and little fuel injection amount of single cylinder diesel engine, high pressure common rail fuel injection system cannot be employed directly. In this study an electrically controlled high pressure fuel injection system of time-pressure-type (PTFS) for single-cylinder diesel engine was demonstrated. PTFS integrated the fuel pump and pressure reservoir (PR) to reduce installation space, which enabled it to match various kinds of single-cylinder diesel engines. However, the volume of the PR of PTFS is still limited, leading to obvious pressure fluctuation induced by periodic fuel pumping and injection. Pressure fluctuation might affect the stability and consistency of fuel injection, deteriorating the combustion and emissions of the engine further. This work established a mathematical model for the system, and studied the effect of the main parameters of the PR to the pressure fluctuations in the PR. The structure and dimensions of the system were optimized and a damping mechanism was proposed to reduce the pressure fluctuation. The optimized pressure fluctuation of PTFS achieved an acceptable level which can support steady and effective fuel injection. As a result, the fuel consumption efficiency and emission level of single cylinder diesel engine were enhanced.


2019 ◽  
Vol 8 (4) ◽  
pp. 4048-4052

Biodiesel, a derivative of vegetable oils and animal fats, is used nowadays as an alternative renewable and sustainable fossil fuel. In this work, the investigation of manufacture, characterization, and results of biodiesel blends are carried out using two important feedstock’s, sunflower oil and ricebran oil on engines. For the collective advantageous of sunflower oil and ricebran oil, the two biodiesels are combined together and the mixture is analysed to assess the engine performance and emission characteristics. NaOH catalyzed transesterification process is used for producing the Biodiesels A 4.4 kW, four-stroke, single-cylinder and direct fuel injection diesel engine is used for measuring physic-chemical with full load and varying speed conditions and using the specifications of ASTM D6751 standard, the properties are compared. It is observed that the Biodiesel mixtures produce a low brake torque and high brake-specific fuel consumption (BSFC) in addition to the reduction of CO and HC emissions. NOx, however, is reduced considerably with the improvement of brake thermal efficiency. The Performance analysis indicates that the mixture of sunflower oil and ricebran oil improves performance and emission characterizes over sunflower oil and ricebran oil biodiesel when they are unmixed..


2000 ◽  
Vol 123 (3) ◽  
pp. 413-424 ◽  
Author(s):  
M. J. van Nieuwstadt ◽  
I. V. Kolmanovsky

Modern direct injection engines feature high pressure fuel injection systems that are required to control the fuel quantity very accurately. Due to limited manufacturing accuracy these systems can benefit from an on-line adaptation scheme that compensates for injector variability. Since cylinder imbalance affects many measurable signals, different sensors and algorithms can be used to equalize torque production by the cylinders. This paper compares several adaptation schemes that use different sensors. The algorithms are evaluated on a cylinder-by-cylinder simulation model of a direct injection high speed diesel engine. A proof of stability and experimental results are reported as well.


Author(s):  
Girish Parvate-Patil ◽  
Manuel Vasquez ◽  
Malcolm Payne

This paper emphasizes on the effects of different biodiesels and diesel on; heat release, ignition delay, endothermic and exothermic reactions, NOx, fuel injection pressure due to the fuel’s modulus of elasticity and cylinder pressure. Two 100% biodiesel and its blends of 20% with of low sulfur #2 diesel, and #2 diesel are tested on a single cylinder diesel engine under full load condition. Engine performance and emissions data is obtained for 100% and 20% biodiesels blends and #2 diesel. Testes were conducted at Engine Systems Development Centre, Inc. (ESDC) to evaluate the effects of biodiesel and its blends on the performance and emissions of a single-cylinder medium-speed diesel engine. The main objective of this work was to gain initial information and experience about biodiesel for railway application based on which biodiesel and its blends could be recommended for further investigation on actual locomotives.


2021 ◽  
Author(s):  
Yuhua Wang ◽  
Guiyong Wang ◽  
Guozhong Yao ◽  
Lizhong Shen ◽  
Shuchao He

Abstract This paper studies the high-pressure common-rail diesel engine fuel supply compensation based on crankshaft fragment signals in order to improve the uneven phenomenon of diesel engine fuel supply and realize high efficiency and low pollution combustion. The experiments were conducted on a diesel engine with the model of YN30CR. Based on the characteristics of crankshaft fragment signals, the proportional integral (PI) control algorithm was used to quantify the engine working nonuniformity and extract the missing degree of fuel injection. The quantization method of each cylinder working uniformity and algorithm of fuel compensation control (FOC) based on crankshaft fragment signal were established, and the control strategy of working uniformity at different operating conditions was put forward. According to the principle of FOC control, a FOC control software module for ECU was designed. The FOC software module was simulated on ASCET platform. The results show that: Compared with the traditional quantization method, the oil compensation information extracted from crankshaft fragment signal has stronger anti-interference and more accurate parameters. FOC algorithm can accurately reflect the engine's working nonuniformity, and the control of the nonuniformity is reasonable. The compensation fuel amount calculated by FOC is high consistency with the fuel supply state of each cylinder set by experiment, which meets the requirement of accurate fuel injection control of common-rail diesel engine.


Sign in / Sign up

Export Citation Format

Share Document