scholarly journals Theoretical predictions of compatibility of polyoxymethylene dimethyl ethers with diesel fuels and diesel additives

Fuel ◽  
2022 ◽  
Vol 307 ◽  
pp. 121797
Author(s):  
Zhenbin Yang ◽  
Chunxiao Ren ◽  
Siqi Jiang ◽  
Yangyang Xin ◽  
Yufeng Hu ◽  
...  
Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 147
Author(s):  
Natascia Palazzo ◽  
Lars Zigan ◽  
Franz J. T. Huber ◽  
Stefan Will

Emissions from diesel engines can be limited and potentially decreased by modifying the fuel chemical composition through additive insertion. One class of additives that have shown to be particularly efficient in the reduction of the particulates from the combustion of diesel fuels are oxygenated compounds. In the present study we investigate the effect of tripropylene glycol methyl ether (TPGME) and two polyoxymethylene dimethyl ethers (POMDME or OMEs) on soot formation in a laminar diesel diffusion flame. From the evaluation of soot volume fraction by laser-induced incandescence (LII) measurements we could observe that OME additives have a substantial capability (higher compared to TPGME) to decrease the particle concentration, which drops by up to 36% with respect to the pure diesel fuel. We also note a reduction in particle aggregate size, determined by wide-angle light scattering (WALS) measurements, which is more pronounced in the case of OME–diesel blends. The effects we observe can be correlated to the higher amount of oxygen content in the OME molecules. Moreover, both additives investigated seem to have almost no impact on the local soot temperature which could in turn play a key role in the production of soot particles.


1988 ◽  
Vol 102 ◽  
pp. 41
Author(s):  
E. Silver ◽  
C. Hailey ◽  
S. Labov ◽  
N. Madden ◽  
D. Landis ◽  
...  

The merits of microcalorimetry below 1°K for high resolution spectroscopy has become widely recognized on theoretical grounds. By combining the high efficiency, broadband spectral sensitivity of traditional photoelectric detectors with the high resolution capabilities characteristic of dispersive spectrometers, the microcalorimeter could potentially revolutionize spectroscopic measurements of astrophysical and laboratory plasmas. In actuality, however, the performance of prototype instruments has fallen short of theoretical predictions and practical detectors are still unavailable for use as laboratory and space-based instruments. These issues are currently being addressed by the new collaborative initiative between LLNL, LBL, U.C.I., U.C.B., and U.C.D.. Microcalorimeters of various types are being developed and tested at temperatures of 1.4, 0.3, and 0.1°K. These include monolithic devices made from NTD Germanium and composite configurations using sapphire substrates with temperature sensors fabricated from NTD Germanium, evaporative films of Germanium-Gold alloy, or material with superconducting transition edges. A new approache to low noise pulse counting electronics has been developed that allows the ultimate speed of the device to be determined solely by the detector thermal response and geometry. Our laboratory studies of the thermal and resistive properties of these and other candidate materials should enable us to characterize the pulse shape and subsequently predict the ultimate performance. We are building a compact adiabatic demagnetization refrigerator for conveniently reaching 0.1°K in the laboratory and for use in future satellite-borne missions. A description of this instrument together with results from our most recent experiments will be presented.


Author(s):  
A.C. Daykin ◽  
C.J. Kiely ◽  
R.C. Pond ◽  
J.L. Batstone

When CoSi2 is grown onto a Si(111) surface it can form in two distinct orientations. A-type CoSi2 has the same orientation as the Si substrate and B-type is rotated by 180° degrees about the [111] surface normal.One method of producing epitaxial CoSi2 is to deposit Co at room temperature and anneal to 650°C.If greater than 10Å of Co is deposited then both A and B-type CoSi2 form via a number of intermediate silicides .The literature suggests that the co-existence of A and B-type CoSi2 is in some way linked to these intermediate silicides analogous to the NiSi2/Si(111) system. The phase which forms prior to complete CoSi2 formation is CoSi. This paper is a crystallographic analysis of the CoSi2/Si(l11) bicrystal using a theoretical method developed by Pond. Transmission electron microscopy (TEM) has been used to verify the theoretical predictions and to characterise the defect structure at the interface.


2020 ◽  
Vol 51 (5) ◽  
pp. 354-359 ◽  
Author(s):  
Yavor Paunov ◽  
Michaela Wänke ◽  
Tobias Vogel

Abstract. Combining the strengths of defaults and transparency information is a potentially powerful way to induce policy compliance. Despite negative theoretical predictions, a recent line of research revealed that default nudges may become more effective if people are informed why they should exhibit the targeted behavior. Yet, it is an open empirical question whether the increase in compliance came from setting a default and consequently disclosing it, or the provided information was sufficient to deliver the effect on its own. Results from an online experiment indicate that both defaulting and transparency information exert a statistically independent effect on compliance, with highest compliance rates observed in the combined condition. Practical and theoretical implications are discussed.


2011 ◽  
pp. 66-77
Author(s):  
O. Vasilieva

Does resource abundance positively affect human capital accumulation? Or, alternatively, does it «crowd out» the human capital leading to the deterioration of economic growth? The paper gives an overview of the relevant literature and discusses both theoretical and empirical results obtained regarding the connection between human capital accumulation and resource abundance. It shows that despite some theoretical predictions about the harmful effect of resource abundance on human capital accumulation, unambiguous evidence of such impact that would be robust with respect to the change of resource abundance parameter has not been obtained yet.


2005 ◽  
Vol 5 (3) ◽  
pp. 223-241
Author(s):  
A. Carpio ◽  
G. Duro

AbstractUnstable growth phenomena in spatially discrete wave equations are studied. We characterize sets of initial states leading to instability and collapse and obtain analytical predictions for the blow-up time. The theoretical predictions are con- trasted with the numerical solutions computed by a variety of schemes. The behavior of the systems in the continuum limit and the impact of discreteness and friction are discussed.


2019 ◽  
Author(s):  
Kazunori Miyamoto ◽  
Shodai Narita ◽  
Yui Masumoto ◽  
Takahiro Hashishin ◽  
Mutsumi Kimura ◽  
...  

Diatomic carbon (C<sub>2</sub>) is historically an elusive chemical species. It has long been believed that the generation of C<sub>2 </sub>requires extremely high “physical” energy, such as an electric carbon arc or multiple photon excitation, and so it has been the general consensus that the inherent nature of C<sub>2 </sub><i>in the ground state </i>is experimentally inaccessible. Here, we present the first “chemical” synthesis of C<sub>2 </sub>in a flask at <i>room temperature or below</i>, providing the first experimental evidence to support theoretical predictions that (1) C<sub>2 </sub>has a singlet biradical character with a quadruple bond, thus settling a long-standing controversy between experimental and theoretical chemists, and that (2) C<sub>2 </sub>serves as a molecular element in the formation of sp<sup>2</sup>-carbon allotropes such as graphite, carbon nanotubes and C<sub>60</sub>.


Sign in / Sign up

Export Citation Format

Share Document