Tailoring the pore structure modified with functional groups for superior CO2 adsorption capacity and the selectivity of separation

Fuel ◽  
2022 ◽  
Vol 309 ◽  
pp. 122175
Author(s):  
Xuefei An ◽  
Kun Zhao ◽  
Weiping Zhang ◽  
Jiahan Yang ◽  
Yujie Liao ◽  
...  
Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3294 ◽  
Author(s):  
Zhenjian Liu ◽  
Zhenyu Zhang ◽  
Xiaoqian Liu ◽  
Tengfei Wu ◽  
Xidong Du

Carbon dioxide (CO2) has been used to replace coal seam gas for recovery enhancement and carbon sequestration. To better understand the alternations of coal seam in response to CO2 sequestration, the properties of four different coals before and after supercritical CO2 (ScCO2) exposure at 40 °C and 16 MPa were analyzed with Fourier Transform infrared spectroscopy (FTIR), low-pressure nitrogen, and CO2 adsorption methods. Further, high-pressure CO2 adsorption isotherms were performed at 40 °C using a gravimetric method. The results indicate that the density of functional groups and mineral matters on coal surface decreased after ScCO2 exposure, especially for low-rank coal. With ScCO2 exposure, only minimal changes in pore shape were observed for various rank coals. However, the micropore specific surface area (SSA) and pore volume increased while the values for mesopore decreased as determined by low-pressure N2 and CO2 adsorption. The combined effects of surface property and pore structure alterations lead to a higher CO2 adsorption capacity at lower pressures but lower CO2 adsorption capacity at higher pressures. Langmuir model fitting shows a decreasing trend in monolayer capacity after ScCO2 exposure, indicating an elimination of the adsorption sites. The results provide new insights for the long-term safety for the evaluation of CO2-enhanced coal seam gas recovery.


Processes ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 634 ◽  
Author(s):  
Shazia Shukrullah ◽  
Muhammad Yasin Naz ◽  
Norani M. Mohamed ◽  
Khalid A. Ibrahim ◽  
Nasser M. AbdEl-Salam ◽  
...  

Carbon dioxide is one of the major greenhouse gases and a leading source of global warming. Several adsorbent materials are being tested for removal of carbon dioxide (CO2) from the atmosphere. The use of multiwalled carbon nanotubes (MWCNTs) as a CO2 adsorbent material is a relatively new research avenue. In this study, Fe2O3/Al2O3 composite catalyst was used to synthesize MWCNTs by cracking ethylene gas molecules in a fluidized bed chemical vapor deposition (CVD) chamber. These nanotubes were treated with H2SO4/HNO3 solution and functionalized with 3-aminopropyl-triethoxysilane (APTS). Chemical modification of nanotubes removed the endcaps and introduced some functional groups along the sidewalls at defected sites. The functionalization of nanotubes with amine introduced carboxylic groups on the tube surface. These functional groups significantly enhance the surface wettability, hydrophilicity and CO2 adsorption capacity of MWCNTs. The CO2 adsorption capacity of as-grown and amine-functionalized CNTs was computed by generating their breakthrough curves. BELSORP-mini equipment was used to generate CO2 breakthrough curves. The oxidation and functionalization of MWCNTs revealed significant improvement in their adsorption capacity. The highest CO2 adsorption of 129 cm3/g was achieved with amine-functionalized MWCNTs among all the tested samples.


2019 ◽  
Vol 19 (3) ◽  
pp. 475-483 ◽  
Author(s):  
Muvumbu Jean-Luc Mukaba ◽  
Alechine Emmanuel Ameh ◽  
Chuks Paul Eze ◽  
Leslie Felicia Petrik

Author(s):  
Joanna Srenscek-Nazzal ◽  
Urszula Narkiewicz ◽  
Antoni W. Morawski ◽  
Rafal J. Wróbel ◽  
Beata Michalkiewicz

2020 ◽  
Vol 294 ◽  
pp. 109871 ◽  
Author(s):  
Satriyo Krido Wahono ◽  
Joseph Stalin ◽  
Jonas Addai-Mensah ◽  
William Skinner ◽  
Ajayan Vinu ◽  
...  

Processes ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 941
Author(s):  
Jun Liu ◽  
Qiang Chen ◽  
Peng Qi

Upgrading raw biogas to methane (CH4) is a vital prerequisite for the utilization of biogas as a vehicle fuel or the similar field as well. In this work, biogas yield from the anaerobic fermentation of food waste containing methane (CH4, 60.4%), carbon dioxide (CO2, 29.1%), hydrogen sulfide (H2S, 1.5%), nitrogen (N2, 7.35%) and oxygen (O2, 1.6%) was upgraded by dynamic adsorption. The hydrogen sulfide was removed from the biogas in advance by iron oxide (Fe2O3) because of its corrosion of the equipment. Commercial 13X zeolite and carbon molecular sieve (CMS) were used to remove the other impurity gases from wet or dry biogas. It was found that neither 13X zeolite nor CMS could effectively remove each of the impurities in the wet biogas for the effect of water vapor. However, 13X zeolite could effectively remove CO2 after the biogas was dried with silica and showed a CO2 adsorption capacity of 78 mg/g at the condition of 0.2 MPa and 25 °C. Additionally, 13X zeolite almost did not adsorb nitrogen (N2), so the CH4 was merely boosted to ac. 91% after the desulfurated dry biogas passed through 13X zeolite, nitrogen remaining in the biogas. CMS would exhibit superior N2 adsorption capacity and low CO2 adsorption capacity if some N2 was present in biogas, so CMS was able to remove all the nitrogen and fractional carbon dioxide from the desulfurated dry biogas in a period of time. Finally, when the desulfurated dry biogas passed through CMS and 13X zeolite in turn, the N2 and CO2 were sequentially removed, and then followed the high purity CH4 (≥96%).


Sign in / Sign up

Export Citation Format

Share Document