Performance and sensitivity analysis of packed-column absorption process using multi-amine solvents for post-combustion CO2 capture

Fuel ◽  
2021 ◽  
pp. 122768
Author(s):  
Hyun-Taek Oh ◽  
Jae-Cheol Lee ◽  
Chang-Ha Lee
2016 ◽  
Vol 13 (1) ◽  
pp. 53
Author(s):  
Siti Nabihah Jamaludin ◽  
Ruzitah Mohd Salleh

Anthropogenic CO2 emissions has led to global climate change and widely contributed to global warming since its concentration has been increasing over time. It has attracted vast attention worldwide. Currently, the different CO2 capture technologies available include absorption, solid adsorption and membrane separation. Chemical absorption technology is regarded as the most mature technology and is commercially used in the industry. However, the key challenge is to find the most efficient solvent in capturing CO2. This paper reviews several types of CO2 capture technologies and the various factors influencing the CO2 absorption process, resulting in the development of a novel solvent for CO2 capture.


Author(s):  
Ravinder Kumar ◽  
Mohammad Hossein Ahmadi ◽  
Dipen Kumar Rajak ◽  
Mohammad Alhuyi Nazari

Abstract Greenhouse gases emissions from large scale industries as well as gasoline based vehicles are mainly responsible for global warming since the 1980s. At present, it has triggered global efforts to reduce the level of GHG. The contribution of carbon dioxide (CO2) in polluting the environment is at a peak due to the excessive use of coal in power plants. So, serious attention is required to reduce the level of CO2 using advanced technologies. Carbon dioxide capture and storage may play an important role in this direction. In process industries, various carbon dioxide capture techniques can be used to reduce CO2 emissions. However, post-combustion carbon dioxide capture is on top priority. Nowadays the researcher is focusing their work on CO2 capture using hybrid solvent. This work highlights a review of carbon dioxide capture using various kind of hybrid solvent in a packed column. The various challenges for absorption efficiency enhancement and future direction are also discussed in the present work. It is concluded through the literature survey that hybrid solvent shows better efficiency in comparison to the aqueous solution used for CO2 capture.


2012 ◽  
Vol 10 ◽  
pp. 295-309 ◽  
Author(s):  
Noorlisa Harun ◽  
Thanita Nittaya ◽  
Peter L. Douglas ◽  
Eric Croiset ◽  
Luis A. Ricardez-Sandoval

2017 ◽  
Vol 24 (2) ◽  
pp. 239-248 ◽  
Author(s):  
Ewelina Kruszczak ◽  
Hanna Kierzkowska-Pawlak

Abstract The CO2 absorption process using aqueous amine solutions has been the most promising technique used for the removal of CO2 from gas streams in energy sector. In recent years, many researchers tested solutions which are composed of several compounds: a slow reacting tertiary amine- and a fast amine acting as an activator. In this paper, the CO2 absorption rate in an aqueous solution of N,N-diethylethanoloamine (DEEA) and activated solutions DEEA is investigated experimentally. The activators considered are sterically hindered amines: 2-amino-2-methyl-1-propanol (AMP), 2-amino-2-methyl-1,3-propanediol (AMPD) and N-methyl-1,3-propanediamine (MAPA) from the group of polyamines. The experiments were conducted over the temperature range of 303-333 K and the total amine concentration of 2 M. From the CO2 absorption experiments into mixed aqueous solutions of DEEA and MAPA, it was found that the addition of small amounts of MAPA into aqueous DEEA solutions has a significant effect on the enhancement of the CO2 absorption rate. The application of hindered amines: AMP or AMP as activators resulted in a marginally improvement of the absorption rate of CO2.


EKUILIBIUM ◽  
2011 ◽  
Vol 10 (2) ◽  
Author(s):  
Endang Kwartiningsih ◽  
Arif Jumari

<p><strong><em>Abstract:</em></strong><strong><em> </em></strong><em>Gas purification from the content of H<sub>2</sub>S using  Fe-EDTA (Iron Chelated Solution) gave  several advantages. The advantages were  the absorbent solution can be regenerated that means  a cheap operation cost,  the separated sulfur was a solid that is easy to handle and is save to be disposal to environment. This research was done by simulation and experimental. The simulation step was done by mathematical model arrangement representing the absorption process in packed column through mass transfer arrangement such as mass transfer equations and chemical reaction. The experimental step was done with the making of Fe-EDTA solution from FeCl<sub>2</sub> and EDTA. Then Fe-EDTA solution was flown in counter current packed column that was contacted with H<sub>2</sub>S in the methane gas. By comparing gas composition result of experiment and simulation, the value of mass transfer coefficient in gas phase ( k<sub>Ag</sub>a), mass transfer coefficient in liquid phase (k<sub>Al</sub>a) and the reaction rate constant ( k) were found. The values of mass transfer coefficient in liquid phase (k<sub>Al</sub>a) were lower than values of mass transfer coefficient in gas phase (k<sub>Ag</sub>a) and the reaction rate constant (k). It meant that H<sub>2</sub>S absorption  process using Fe-EDTA absorbent solution was determined by mass transfer process in liquid phase. The higher flow rate of absorbent, the higher value of mass transfer coefficient in liquid phase. </em><em>The smaller packing diameter, the higher value of mass transfer coefficient in liquid phase.From analysis of dimension, the relation of dimensionless number between Sherwood number and flow rate of absorbent, packing diameter was</em><strong></strong></p><p> <strong><em>Keywords:</em></strong><strong><em> </em></strong><em>chemical reaction, Fe-EDTA, H<sub>2</sub>S absorption, mass transfer</em></p>


2015 ◽  
Vol 135 ◽  
pp. 60-65 ◽  
Author(s):  
Kathryn Smith ◽  
Andrew Lee ◽  
Kathryn Mumford ◽  
Sheng Li ◽  
Indrawan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document