Research progress of natural gas hydrate exploitation with CO2 replacement: A review

Fuel ◽  
2022 ◽  
Vol 312 ◽  
pp. 122873
Author(s):  
Wen-Na Wei ◽  
Bo Li ◽  
Quan Gan ◽  
Yuan-Le Li
2014 ◽  
Vol 978 ◽  
pp. 165-168 ◽  
Author(s):  
Rong Huo ◽  
Kai Bo Duan

With the further development of national economy, people have become more concerned about the environment quality. Especially in recent years, due to the frequent occurrence of hazy weather, there has been a growing demand for clean energy [Fig. 1]. As one kind of non-conventional energy, natural gas hydrate, featured by large reserves and relatively clean products of combustion, is considered by the scientific community to be an alternative energy resource in replacement of coal and petroleum. This paper gives a brief introduction of the research progress of natural gas hydrate both at home and abroad, presents the research results and the obstacles in the next step to be taken for China, and then looks into the future development trend.


2021 ◽  
Vol 18 (2) ◽  
pp. 323-338
Author(s):  
Xiong-Qi Pang ◽  
Zhuo-Heng Chen ◽  
Cheng-Zao Jia ◽  
En-Ze Wang ◽  
He-Sheng Shi ◽  
...  

AbstractNatural gas hydrate (NGH) has been widely considered as an alternative to conventional oil and gas resources in the future energy resource supply since Trofimuk’s first resource assessment in 1973. At least 29 global estimates have been published from various studies so far, among which 24 estimates are greater than the total conventional gas resources. If drawn in chronological order, the 29 historical resource estimates show a clear downward trend, reflecting the changes in our perception with respect to its resource potential with increasing our knowledge on the NGH with time. A time series of the 29 estimates was used to establish a statistical model for predict the future trend. The model produces an expected resource value of 41.46 × 1012 m3 at the year of 2050. The statistical trend projected future gas hydrate resource is only about 10% of total natural gas resource in conventional reservoir, consistent with estimates of global technically recoverable resources (TRR) in gas hydrate from Monte Carlo technique based on volumetric and material balance approaches. Considering the technical challenges and high cost in commercial production and the lack of competitive advantages compared with rapid growing unconventional and renewable resources, only those on the very top of the gas hydrate resource pyramid will be added to future energy supply. It is unlikely that the NGH will be the major energy source in the future.


ACS Omega ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 3017-3023
Author(s):  
Song Deng ◽  
Dingkun Ling ◽  
Binbin Zhou ◽  
Yu Gong ◽  
Xin Shen ◽  
...  

2021 ◽  
Author(s):  
Min Zhang ◽  
Ming Niu ◽  
Shiwei Shen ◽  
Shulin Dai ◽  
Yan Xu

Author(s):  
Bohui Shi ◽  
Shangfei Song ◽  
Yuchuan Chen ◽  
Xu Duan ◽  
Qingyun Liao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document