Preparation, characterization and Methylene Blue adsorption of phosphoric acid activated carbons from globe artichoke leaves

2011 ◽  
Vol 92 (6) ◽  
pp. 1203-1212 ◽  
Author(s):  
M. Benadjemia ◽  
L. Millière ◽  
L. Reinert ◽  
N. Benderdouche ◽  
L. Duclaux
2015 ◽  
Vol 6 (2) ◽  
pp. 9-14 ◽  
Author(s):  
Surajudeen Olawale Adegboyega ◽  
Ayoola Ajayi Olusegun ◽  
Sunday Olakunle Michael ◽  
Thaddeus Ityokumbul Mku ◽  
Sunday Adefila Sam

2020 ◽  
Vol 841 ◽  
pp. 273-277
Author(s):  
Ariany Zulkania ◽  
Muhammad Iqbal ◽  
Syamsumarlin

In this study, two types of adsorbent including activated carbon and bio-sorbent were produced from Palm fiber wastes (PFW), which were activated by phosphoric acid. The influence of adsorbent type and phosphoric acid concentration on methylene blue adsorption was investigated. The most optimum adsorbent was determined based on adsorption capacity and removal percentage of each adsorbent. The result shows that 9.984 mg/g of adsorption capacity and 99.84% of removal percentage were achieved in 90 minutes’ adsorption, which demonstrates the huge potential of bio-sorbent and was chosen to be the most optimum adsorbent based on methylene blue removal. The characterization of bio-sorbent was then investigated using FTIR and SEM. FTIR result shows that bio-sorbent contains cellulose which affected the adsorption process while SEM result shows the cleaner pores and surface compared to bio-sorbent before activation.


2012 ◽  
Vol 518-523 ◽  
pp. 2298-2302
Author(s):  
Yue Zhou ◽  
Wei Guo Pan ◽  
Rui Tang Guo ◽  
Xiao Bo Zhang ◽  
Xue Ping Wen ◽  
...  

In order to reduce power plant nitric oxide emission with gaining economical adsorbent, activated carbon was prepared from the raw materials of orange peel under different operating conditions in this paper. The methylene blue adsorption value of different activated carbon has also been tested, and the effects on the methylene blue adsorption performance of different dipping concentration, activation time and carbonization temperature were studied. The finding is that the dipping concentration has the most important impact on methylene blue adsorption value. The highest methylene blue adsorption value of orange peel activated carbon has shown as 277.746mg/g under the following conditions: phosphoric acid concentration was 40%, activation time was 12 hours and carbonization temperature was 500°C. It is a economically feasible absorbent material through a great deal of experiments and analysis.


2017 ◽  
Vol 12 (1) ◽  
pp. 169-174 ◽  
Author(s):  
Rajeshwar Man Shrestha

The adsorption of Methylene blue by the activated carbons prepared from a locally available material Lapsi Seed Stone has been studied. Various activated carbons were prepared by varying the parameters such as ratio of Lapsi seed stone particles to Phosphoric acid, carbonization temperature and carbonization time. Determination of Methylene blue numbers of the activated carbons was done by single point method by batch mode. Methylene blue number is found to be affected by the various preparation conditions like carbonization temperature, carbonization time, ratio of activating agent and Lapsi seed stone particles and the concentration of phosphoric acid. The optimum conditions for the preparation of activated carbon are found to be carbonization temperature 400°C for 4 hours at the ratio of 1:1 Lapsi seed stone particles and Phosphoric acid.Journal of the Institute of Engineering, 2016, 12(1): 169-174


2013 ◽  
Vol 545 ◽  
pp. 129-133 ◽  
Author(s):  
Athiwat Sirimuangjinda ◽  
Khanthima Hemra ◽  
Duangduen Atong ◽  
Chiravoot Pechyen

Activated carbons were prepared by chemical activation from scrap tire with two chemical reagents, NaOH and KOH. The activation consisted of different impregnation of a reagent followed by carbonization in nitrogen at 700°C. The resultant activated carbons were characterized in terms of BET surface area, methylene blue adsorption and iodine number. The influence of each parameter of the synthesis on the properties of the activated carbons was discussed, and the action of each hydroxide was methodically compared. It is the first time that preparation parameters and pore texture characteristics are simultaneously considered for two closely related activating agents of the same char precursor. Whatever the preparation conditions, it was shown that KOH led to the most microporous materials, having surface areas and adsorption properties (methylene blue adsorption and iodine number) higher than those obtained with NaOH, which was in agreement with some early works. However, the surface areas, methylene blue adsorption and iodine number obtained in the present study were much higher than in previous studies, up to 951 m2/g, 510 mg/g and 752 mg/g, respectively, using scrap tire waste char:KOH equal to 1:1. The thorough study of the way each preparation parameter influenced the properties of the final materials bought insight into the activation mechanisms. Each time it was possible; the results of scrap tire waste chemically activated with hydroxides were compared with those obtained with anthracites; explanations of similarities and differences were systematically looked for.


Sign in / Sign up

Export Citation Format

Share Document