Activated carbons from waste biomass by sulfuric acid activation and their use on methylene blue adsorption

2008 ◽  
Vol 99 (14) ◽  
pp. 6214-6222 ◽  
Author(s):  
S KARAGOZ ◽  
T TAY ◽  
S UCAR ◽  
M ERDEM
2012 ◽  
Vol 626 ◽  
pp. 706-710 ◽  
Author(s):  
Athiwat Sirimuangjinda ◽  
Duangduen Atong ◽  
Chiravoot Pechyen

Two activated carbons employing Scrap Tire as precursor were produced by using two different activating agents, HCl and H2SO4 (fixed impregnation ratio 1:1). Both of activated carbons were allowed by single-step to get difference carbonized at 500, 600 and 700°C in a muffle furnace for 1 h. Activated carbons differed with the physical structure, chemical and adsorption properties which were derived from Scanning Electron Microscope, and N2 adsorption/desorption isotherms. Batched sorption studies were performed to compare the iodine and methylene blue adsorption properties of two carbons. The carbon materials obtained from sulfuric acid activation of 500°C has BET surface area as high as 1066.70 m2/g, Methylene blue adsorption and Iodine number of 288.90 and 590.50 mg/g, respectively. The surface area and adsorption properties of carbon produced using sulfuric acid activation were higher than that produced using hydrochloric acid activation. The results suggest the feasibility of the process from the point of view of both porous texture and adsorption yield.


2021 ◽  
Vol 7 ◽  
Author(s):  
Prakash Parthasarathy ◽  
Hamish R. Mackey ◽  
Sabah Mariyam ◽  
Shifa Zuhara ◽  
Tareq Al-Ansari ◽  
...  

Bamboo is found worldwide but is especially concentrated in tropical and subtropical areas with the major producing nations being China, Indonesia and Thailand with an annual production of 12 million tonnes. It has found uses in many applications such as: furniture, flooring, roofing, fencing, interior design and scaffolding in the construction industry. In this study, discarded waste bamboo furniture was used in the ground form as the raw material feedstock for the production of a series of biochars and activated carbons. The biochars were produced at different temperatures, namely, 723, 823, 923, 1,023, 1,123 and 1223 K, in a muffle furnace inerted with nitrogen and for different pyrolysis times. The product chars yields were 20–30% by weight of the raw material, surface areas were 100–350 m2/g. Other tests include elemental analysis, helium displacement density, pH, ICP-AES on a leachate sample. Four of the different temperature samples of biochar were used to adsorb the basic dye methylene blue and were shown to possess high adsorption capacities. Then, the same bamboo raw material powder was treated with acid and pyrolysed/activated in a nitrogen atmosphere at the same range of temperatures to produce activated carbons; these were characterized using similar test methods to the biochars. The yields are in the range 20–40% by weight of the raw material feedstock and the BET surface areas are in the range 200–600 m2/g. Three of the different temperature activated carbons were used to adsorb methylene blue and the results were compared with the biochar results. All the adsorption experimental isotherm results were analyzed using conventional isotherm equations. The benefits and cost implications of both biochar and activated carbon routes are discussed. The methylene blue adsorption capacities are extremely attractive in the range 0.42–1.12 mmol/g (150–300 mg/g char product) and extend to over 2.35 mmol/g (700 mg/g) for the bamboo derived activated carbons. The micropore and mesopore volumes have been determined under the various char and activated carbon experimental conditions and coupled with the surface areas; these results have been used to explain the trends in the methylene blue adsorption capacities.


2015 ◽  
Vol 6 (2) ◽  
pp. 9-14 ◽  
Author(s):  
Surajudeen Olawale Adegboyega ◽  
Ayoola Ajayi Olusegun ◽  
Sunday Olakunle Michael ◽  
Thaddeus Ityokumbul Mku ◽  
Sunday Adefila Sam

2012 ◽  
Vol 518-523 ◽  
pp. 2298-2302
Author(s):  
Yue Zhou ◽  
Wei Guo Pan ◽  
Rui Tang Guo ◽  
Xiao Bo Zhang ◽  
Xue Ping Wen ◽  
...  

In order to reduce power plant nitric oxide emission with gaining economical adsorbent, activated carbon was prepared from the raw materials of orange peel under different operating conditions in this paper. The methylene blue adsorption value of different activated carbon has also been tested, and the effects on the methylene blue adsorption performance of different dipping concentration, activation time and carbonization temperature were studied. The finding is that the dipping concentration has the most important impact on methylene blue adsorption value. The highest methylene blue adsorption value of orange peel activated carbon has shown as 277.746mg/g under the following conditions: phosphoric acid concentration was 40%, activation time was 12 hours and carbonization temperature was 500°C. It is a economically feasible absorbent material through a great deal of experiments and analysis.


2011 ◽  
Vol 92 (6) ◽  
pp. 1203-1212 ◽  
Author(s):  
M. Benadjemia ◽  
L. Millière ◽  
L. Reinert ◽  
N. Benderdouche ◽  
L. Duclaux

2019 ◽  
Vol 19 (9) ◽  
pp. 827-836 ◽  
Author(s):  
Gurumoorthy Vijayalaks ◽  
Balasubramanian Ramkumar ◽  
Shanmugavadivelu Cha Mohan

2013 ◽  
Vol 545 ◽  
pp. 129-133 ◽  
Author(s):  
Athiwat Sirimuangjinda ◽  
Khanthima Hemra ◽  
Duangduen Atong ◽  
Chiravoot Pechyen

Activated carbons were prepared by chemical activation from scrap tire with two chemical reagents, NaOH and KOH. The activation consisted of different impregnation of a reagent followed by carbonization in nitrogen at 700°C. The resultant activated carbons were characterized in terms of BET surface area, methylene blue adsorption and iodine number. The influence of each parameter of the synthesis on the properties of the activated carbons was discussed, and the action of each hydroxide was methodically compared. It is the first time that preparation parameters and pore texture characteristics are simultaneously considered for two closely related activating agents of the same char precursor. Whatever the preparation conditions, it was shown that KOH led to the most microporous materials, having surface areas and adsorption properties (methylene blue adsorption and iodine number) higher than those obtained with NaOH, which was in agreement with some early works. However, the surface areas, methylene blue adsorption and iodine number obtained in the present study were much higher than in previous studies, up to 951 m2/g, 510 mg/g and 752 mg/g, respectively, using scrap tire waste char:KOH equal to 1:1. The thorough study of the way each preparation parameter influenced the properties of the final materials bought insight into the activation mechanisms. Each time it was possible; the results of scrap tire waste chemically activated with hydroxides were compared with those obtained with anthracites; explanations of similarities and differences were systematically looked for.


Sign in / Sign up

Export Citation Format

Share Document