Comparison on Pore Development of Activated Carbon Produced from Scrap Tire by Potassium Hydroxide and Sodium Hydroxide for Active Packaging Materials

2013 ◽  
Vol 545 ◽  
pp. 129-133 ◽  
Author(s):  
Athiwat Sirimuangjinda ◽  
Khanthima Hemra ◽  
Duangduen Atong ◽  
Chiravoot Pechyen

Activated carbons were prepared by chemical activation from scrap tire with two chemical reagents, NaOH and KOH. The activation consisted of different impregnation of a reagent followed by carbonization in nitrogen at 700°C. The resultant activated carbons were characterized in terms of BET surface area, methylene blue adsorption and iodine number. The influence of each parameter of the synthesis on the properties of the activated carbons was discussed, and the action of each hydroxide was methodically compared. It is the first time that preparation parameters and pore texture characteristics are simultaneously considered for two closely related activating agents of the same char precursor. Whatever the preparation conditions, it was shown that KOH led to the most microporous materials, having surface areas and adsorption properties (methylene blue adsorption and iodine number) higher than those obtained with NaOH, which was in agreement with some early works. However, the surface areas, methylene blue adsorption and iodine number obtained in the present study were much higher than in previous studies, up to 951 m2/g, 510 mg/g and 752 mg/g, respectively, using scrap tire waste char:KOH equal to 1:1. The thorough study of the way each preparation parameter influenced the properties of the final materials bought insight into the activation mechanisms. Each time it was possible; the results of scrap tire waste chemically activated with hydroxides were compared with those obtained with anthracites; explanations of similarities and differences were systematically looked for.

2011 ◽  
Vol 704-705 ◽  
pp. 517-522 ◽  
Author(s):  
Xiao Juan Jin ◽  
Zhi Ming Yu ◽  
Gao Jiang Yan ◽  
Wu Yu

Activated carbons were prepared through chemical activation of lignin from straw pulping precursor using potassium carbonate as the chemical agent. Effects of activated temperature, K2CO3/lignin ratio and the activated time on the yield, Iodine number of activated carbon were investigated. Experimental results indicated that the optimum conditions were as follow: activated temperature 800°C, K3CO3(40% concentration) /lignin ratio 5: l, activated time 50min. These conditions allowed us to obtain a BET surface area of 1104 m2/g, including the external or non-microporous surface of 417 m2/g,Amount of methylene blue adsorption, Iodine number and the yield of activated carbon prepared under optimum conditions were 10.6mL/0.lg,1310 mg/g and 19.75%, respectively.


2010 ◽  
Vol 44-47 ◽  
pp. 2562-2568
Author(s):  
Wu Yu ◽  
Ming Yu Zhi ◽  
Xiao Juan Jin

Activated carbons were prepared from waste particle board (WPB) by K2CO3 activation. The effects of different parameters, such as chemical/WPB ratio, activation time and activation temperature on yield, the methylene blue adsorption, Iodine number of activated carbon were investigated. The optimum conditions were determined by the method of factor analysis and the orthogonal design as follows: activation temperature 900°C, K2CO3 (50% concentration)/ WPB 4.0, activation time 60 min. Amount of methylene blue adsorption, Iodine number, phenol adsorption, BET surface area and the yield of activated carbon prepared under optimum conditions were 82.5mg/g, 1234mg/g, 185mg/g, 1026m2/g and 30.4%, respectively.


2012 ◽  
Vol 626 ◽  
pp. 706-710 ◽  
Author(s):  
Athiwat Sirimuangjinda ◽  
Duangduen Atong ◽  
Chiravoot Pechyen

Two activated carbons employing Scrap Tire as precursor were produced by using two different activating agents, HCl and H2SO4 (fixed impregnation ratio 1:1). Both of activated carbons were allowed by single-step to get difference carbonized at 500, 600 and 700°C in a muffle furnace for 1 h. Activated carbons differed with the physical structure, chemical and adsorption properties which were derived from Scanning Electron Microscope, and N2 adsorption/desorption isotherms. Batched sorption studies were performed to compare the iodine and methylene blue adsorption properties of two carbons. The carbon materials obtained from sulfuric acid activation of 500°C has BET surface area as high as 1066.70 m2/g, Methylene blue adsorption and Iodine number of 288.90 and 590.50 mg/g, respectively. The surface area and adsorption properties of carbon produced using sulfuric acid activation were higher than that produced using hydrochloric acid activation. The results suggest the feasibility of the process from the point of view of both porous texture and adsorption yield.


2014 ◽  
Vol 881-883 ◽  
pp. 579-583 ◽  
Author(s):  
Ling Zhi Chen ◽  
Dong Xu Miao ◽  
Xiao Jie Feng ◽  
Jian Zhong Xu

Activated carbons (AC) were produced by chemical activation with potassium hydroxide (KOH) at 800°C from chars that were carbonized from reedy grass leaves at 450°C in N2atmosphere. The effects of the weight ratio of KOH/char ( impregnation ratio), activation temperature and duration time were examined. Adsorption capacity was demonstrated with iodine number. BET surface area, pore volume and pore size of activated carbons were characterized by N2adsorption isotherms. The maximum surface area and iodine number of the AC was 1100 m2/g and 1080 mg/g produced at 800°C for2h and impregnation ratio is 4:1.The characteristics of activated carbons were determined by Infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). Thermal gravimetry (TG/DTA) analysis of raw material was carried out.


Author(s):  
Mustafa Kaya ◽  
Ömer Şahin ◽  
Cafer Saka

AbstractIn this study, low cost activated carbon was prepared from the pistachio shell by chemical activation with zinc chloride (ZnCl2). The prepared activated carbon was characterized by thermogravimetry (TG) and differential thermal gravimetry (DTG), infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and Brunauer, Emmett and Teller (BET) surface area analyses. Results showed that the activation temperature and impregnation ratio have significant effect on the iodine number of the prepared activated carbon. The optimum conditions for preparing the activated carbon having the highest surface area were found to be an activation temperature of 700 °C, soaking time of 24 h and ZnCl2/ pistachio shell ratio of 50 %. The results showed that the BET surface area, total pore volume, iodine number and methylene blue (MB) number of activated carbon prepared under the optimum conditions were 1108 m2/g, 0.39 cm3/g, 1051 mg/g, 98.48 mg/g, respectively.


2021 ◽  
Vol 7 ◽  
Author(s):  
Prakash Parthasarathy ◽  
Hamish R. Mackey ◽  
Sabah Mariyam ◽  
Shifa Zuhara ◽  
Tareq Al-Ansari ◽  
...  

Bamboo is found worldwide but is especially concentrated in tropical and subtropical areas with the major producing nations being China, Indonesia and Thailand with an annual production of 12 million tonnes. It has found uses in many applications such as: furniture, flooring, roofing, fencing, interior design and scaffolding in the construction industry. In this study, discarded waste bamboo furniture was used in the ground form as the raw material feedstock for the production of a series of biochars and activated carbons. The biochars were produced at different temperatures, namely, 723, 823, 923, 1,023, 1,123 and 1223 K, in a muffle furnace inerted with nitrogen and for different pyrolysis times. The product chars yields were 20–30% by weight of the raw material, surface areas were 100–350 m2/g. Other tests include elemental analysis, helium displacement density, pH, ICP-AES on a leachate sample. Four of the different temperature samples of biochar were used to adsorb the basic dye methylene blue and were shown to possess high adsorption capacities. Then, the same bamboo raw material powder was treated with acid and pyrolysed/activated in a nitrogen atmosphere at the same range of temperatures to produce activated carbons; these were characterized using similar test methods to the biochars. The yields are in the range 20–40% by weight of the raw material feedstock and the BET surface areas are in the range 200–600 m2/g. Three of the different temperature activated carbons were used to adsorb methylene blue and the results were compared with the biochar results. All the adsorption experimental isotherm results were analyzed using conventional isotherm equations. The benefits and cost implications of both biochar and activated carbon routes are discussed. The methylene blue adsorption capacities are extremely attractive in the range 0.42–1.12 mmol/g (150–300 mg/g char product) and extend to over 2.35 mmol/g (700 mg/g) for the bamboo derived activated carbons. The micropore and mesopore volumes have been determined under the various char and activated carbon experimental conditions and coupled with the surface areas; these results have been used to explain the trends in the methylene blue adsorption capacities.


Author(s):  
Batkhishig Damdin ◽  
Purevsuren Barnasan ◽  
Chung-Jun Lin ◽  
Batbileg Sanjaa ◽  
Ariunaa Alyeksandr

Initial coal was purified in heavy liquid with a density 1.3 cm3 of ZnCl2 solution and purified coal was carbonized and the initial coal samples of each deposits were purified by pyrolysis. Thus, the yield of pyrolysis hard residue in the enriched sample was slightly higher than in the hard residue of initial coal. Therefore, pyrolysis hard residue of purified coal (carbonized sample) was activated at 800°C for 2 hours by preheated water steam. Activated carbons (ACs) and non-activated and non-carbonized coal from Baganuur, Ereen and Nariin Sukhait deposits were technically analyzed and their iodine number, BET surface area, pore volume and adsorption of methylene blue (MB) were determined. When these results were compared, these indicators increased 5-17 times in the Baganuur activated carbon (BN-AC), Ereen activated carbon (E-AC) and Nariin Sukhait activated carbon (NS-AC) as compared to inactivated coal.


2019 ◽  
Vol 9 (23) ◽  
pp. 5127 ◽  
Author(s):  
Elena Diaz ◽  
Francisco Javier Manzano ◽  
John Villamil ◽  
Juan Jose Rodriguez ◽  
Angel F. Mohedano

Activated carbons were prepared by chemical activation with KOH, FeCl3 and H3PO4 of the chars obtained via hydrothermal carbonization of grape seeds. The hydrochars prepared at temperatures higher than 200 °C yielded quite similar proximate and ultimate analyses. However, heating value (24.5–31.4 MJ·kg−1) and energy density (1.04–1.33) significantly increased with carbonization temperatures between 180 and 300 °C. All the hydrochars showed negligible BET surface areas, while values between 100 and 845 m2·g−1 were measured by CO2 adsorption at 273 K. Activation of the hydrochars with KOH (activating agent to hydrochar ratio of 3:1 and 750 °C) led to highly porous carbons with around 2200 m2·g−1 BET surface area. Significantly lower values were obtained with FeCl3 (321–417 m2·g−1) and H3PO4 (590–654 m2·g−1), showing these last activated carbons important contributors to mesopores. The resulting materials were tested in the adsorption of sulfamethoxazole from aqueous solution. The adsorption capacity was determined by the porous texture rather than by the surface composition, and analyzed by FTIR and TPD. The adsorption equilibrium data (20 °C) fitted the Langmuir equation well. The KOH-activated carbons yielded fairly high saturation capacity reaching up to 650 mg·g−1.


2018 ◽  
Vol 8 (9) ◽  
pp. 1596 ◽  
Author(s):  
Jung Park ◽  
Gi Lee ◽  
Sang Hwang ◽  
Ji Kim ◽  
Bum Hong ◽  
...  

In this study, a feasible experiment on adsorbed natural gas (ANG) was performed using activated carbons (ACs) with high surface areas. Upgraded ACs were prepared using chemical activation with potassium hydroxide, and were then applied as adsorbents for methane (CH4) storage. This study had three principal objectives: (i) upgrade ACs with high surface areas; (ii) evaluate the factors regulating CH4 adsorption capacity; and (iii) assess discharge conditions for the delivery of CH4. The results showed that upgraded ACs with surface areas of 3052 m2/g had the highest CH4 storage capacity (0.32 g-CH4/g-ACs at 3.5 MPa), which was over two times higher than the surface area and storage capacity of low-grade ACs (surface area = 1152 m2/g, 0.10 g-CH4/g-ACs). Among the factors such as surface area, packing density, and heat of adsorption in the ANG system, the heat of adsorption played an important role in controlling CH4 adsorption. The released heat also affected the CH4 storage and enhanced available applications. During the discharge of gas from the ANG system, the residual amount of CH4 increased as the temperature decreased. The amount of delivered gas was confirmed using different evacuation flow rates at 0.4 MPa, and the highest efficiency of delivery was 98% at 0.1 L/min. The results of this research strongly suggested that the heat of adsorption should be controlled by both recharging and discharging processes to prevent rapid temperature change in the adsorbent bed.


2015 ◽  
Vol 69 (5) ◽  
pp. 561-565 ◽  
Author(s):  
Muhammad Shoaib ◽  
Hassan Al-Swaidan

The effects of the reaction vessel pressure on the BET surface area, pore volume and pore size of the synthesis of sliced activated carbons (SAC) at 850?C starting from 0.10 to 0.40 bars were investigated. Other synthetic variables like dwell time, CO2 flow rate and heating ramp rate were kept constant during the whole study. Methodology involves a single step procedure using the mixture of gases (N2 and CO2). During activation flow rate of both gases are kept at 150 and 50ml/min respectively. The BET surface areas of the SAC prepared at 0.10, 0.15, 0.20, 0.25, 0.30, 0.35 and 0.40 bar after 30 minutes activation time are 666, 745, 895, 1094, 835, 658 and 625 m2/g, respectively. Scanning electron microscopy (SEM) for surface morphology, Energy dispersive spectroscopy (EDS), Transmission electron microscopy (TEM) for nano particle size were also carried out that also confirms the same trend.


Sign in / Sign up

Export Citation Format

Share Document