Training and assessment of upper limb motor function with a robotic exoskeleton in chronic stroke patients

2014 ◽  
Vol 40 ◽  
pp. S27-S28 ◽  
Author(s):  
C. Chisari ◽  
A. Frisoli ◽  
E. Sotgiu ◽  
C. Procopio ◽  
F. Bertolucci ◽  
...  
2019 ◽  
Vol 33 (3) ◽  
pp. 188-198 ◽  
Author(s):  
Ander Ramos-Murguialday ◽  
Marco R. Curado ◽  
Doris Broetz ◽  
Özge Yilmaz ◽  
Fabricio L. Brasil ◽  
...  

Background. Brain-machine interfaces (BMIs) have been recently proposed as a new tool to induce functional recovery in stroke patients. Objective. Here we evaluated long-term effects of BMI training and physiotherapy in motor function of severely paralyzed chronic stroke patients 6 months after intervention. Methods. A total of 30 chronic stroke patients with severe hand paresis from our previous study were invited, and 28 underwent follow-up assessments. BMI training included voluntary desynchronization of ipsilesional EEG-sensorimotor rhythms triggering paretic upper-limb movements via robotic orthoses (experimental group, n = 16) or random orthoses movements (sham group, n = 12). Both groups received identical physiotherapy following BMI sessions and a home-based training program after intervention. Upper-limb motor assessment scores, electromyography (EMG), and functional magnetic resonance imaging (fMRI) were assessed before (Pre), immediately after (Post1), and 6 months after intervention (Post2). Results. The experimental group presented with upper-limb Fugl-Meyer assessment (cFMA) scores significantly higher in Post2 (13.44 ± 1.96) as compared with the Pre session (11.16 ± 1.73; P = .015) and no significant changes between Post1 and Post2 sessions. The Sham group showed no significant changes on cFMA scores. Ashworth scores and EMG activity in both groups increased from Post1 to Post2. Moreover, fMRI-BOLD laterality index showed no significant difference from Pre or Post1 to Post2 sessions. Conclusions. BMI-based rehabilitation promotes long-lasting improvements in motor function of chronic stroke patients with severe paresis and represents a promising strategy in severe stroke neurorehabilitation.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yi-Qian Hu ◽  
Tian-Hao Gao ◽  
Jie Li ◽  
Jia-Chao Tao ◽  
Yu-Long Bai ◽  
...  

Background. Recently, the brain-computer interface (BCI) has seen rapid development, which may promote the recovery of motor function in chronic stroke patients. Methods. Twelve stroke patients with severe upper limb and hand motor impairment were enrolled and randomly assigned into two groups: motor imagery (MI)-based BCI training with multimodal feedback (BCI group, n = 7) and classical motor imagery training (control group, n = 5). Motor function and electrophysiology were evaluated before and after the intervention. The Fugl-Meyer assessment-upper extremity (FMA-UE) is the primary outcome measure. Secondary outcome measures include an increase in wrist active extension or surface electromyography (the amplitude and cocontraction of extensor carpi radialis during movement), the action research arm test (ARAT), the motor status scale (MSS), and Barthel index (BI). Time-frequency analysis and power spectral analysis were used to reflect the electroencephalogram (EEG) change before and after the intervention. Results. Compared with the baseline, the FMA-UE score increased significantly in the BCI group ( p  = 0.006). MSS scores improved significantly in both groups, while ARAT did not improve significantly. In addition, before the intervention, all patients could not actively extend their wrists or just had muscle contractions. After the intervention, four patients regained the ability to extend their paretic wrists (two in each group). The amplitude and area under the curve of extensor carpi radialis improved to some extent, but there was no statistical significance between the groups. Conclusion. MI-based BCI combined with sensory and visual feedback might improve severe upper limb and hand impairment in chronic stroke patients, showing the potential for application in rehabilitation medicine.


Stroke ◽  
2014 ◽  
Vol 45 (suppl_1) ◽  
Author(s):  
Eunhee Park ◽  
Tae Gun Kwon ◽  
Won Hyuk Chang ◽  
Yun-Hee Kim

Objective: The purpose of this study was to investigate the effect of dual-mode noninvasive brain stimulation (NBS) by combining transcranial direct current stimulation (tDCS) over the unaffected primary motor cortex (uM1) and high-frequency repetitive transcranial magnetic stimulation (rTMS) over the affected M1 (aM1) on motor functions and corticomotor excitability in chronic stroke patients. Methods: Seventeen chronic stroke patients (12 men; mean age 58.7 years; 12 infarctions and 5 hemorrhages) participated in this double blinded random-order crossover study. All participants received three randomly arranged, dual-mode stimulations with 24 hours of washout period; Condition 1, simultaneous application of 10 Hz rTMS over the aM1 and cathodal tDCS over the uM1; Condition 2, simultaneous application of 10 Hz rTMS over the M1a and anodal tDCS over the uM1; Condition 3, 10 Hz rTMS over the aM1 and sham tDCS over the uM1. Corticomotor excitability using motor evoked potential (MEP) amplitude and hand motor functions using the sequential motor task were assessed before and after stimulation. Results: MEP amplitude was significantly increased after condition 1 and 3, respectively (p<0.05). The changes of MEP amplitude were significantly higher in condition 1 than condition 2 (p<0.05). In sequential motor task, the movement time was significantly decreased after condition 1 and 3, respectively (p<0.05). The change of movement time was significantly larger in condition 1 than the other conditions (p<0.05). Conclusions: Simultaneous stimulation of cathodal tDCS over the uM1 produced enhancement of 10 Hz rTMS effect over the aM1 in patients with stroke. These results suggest the dual-mode NBS as a method of enhancing motor function probably by inducing interhemispheric interaction of bilateral primary motor cortices in chronic stroke patients (Supported by the National Research Foundation of Korea grant (No.2011-0016960) and a KOSEF grant (M10644000022-06N4400-02210)).


2015 ◽  
Vol 37 (5) ◽  
pp. 434-440 ◽  
Author(s):  
Yanna Tong ◽  
Brian Forreider ◽  
Xinting Sun ◽  
Xiaokun Geng ◽  
Weidong Zhang ◽  
...  

2018 ◽  
Vol 42 (1) ◽  
pp. 43-52 ◽  
Author(s):  
S. Mazzoleni ◽  
E. Battini ◽  
R. Crecchi ◽  
P. Dario ◽  
F. Posteraro

Sign in / Sign up

Export Citation Format

Share Document