scholarly journals Genome wide transcription profiling reveals a major role for the transcription factor Atf1 in regulation of cell division in Schizosaccharomyces pombe

Genomics Data ◽  
2015 ◽  
Vol 6 ◽  
pp. 184-187 ◽  
Author(s):  
Sushobhana Bandyopadhyay ◽  
Geetanjali Sundaram
2006 ◽  
Vol 17 (1) ◽  
pp. 295-307 ◽  
Author(s):  
Fang Cao ◽  
Shelley Lane ◽  
Prashna Pala Raniga ◽  
Yang Lu ◽  
Zhou Zhou ◽  
...  

The transcription factor Flo8 is essential for filamentous growth in Saccharomyces cerevisiae and is regulated under the cAMP/protein kinase A (PKA) pathway. To determine whether a similar pathway/regulation exists in Candida albicans, we have cloned C. albicans FLO8 by its ability to complement S. cerevisiae flo8. Deleting FLO8 in C. albicans blocked hyphal development and hypha-specific gene expression. The flo8/flo8 mutant is avirulent in a mouse model of systemic infection. Genome-wide transcription profiling of efg1/efg1 and flo8/flo8 using a C. albicans DNA microarray suggests that Flo8 controls subsets of Efg1-regulated genes. Most of these genes are hypha specific, including HGC1 and IHD1. We also show that Flo8 interacts with Efg1 in yeast and hyphal cells by in vivo immunoprecipitation. Similar to efg1/efg1, flo8/flo8 and cdc35/cdc35 show enhanced hyphal growth under an embedded growth condition. Our results suggest that Flo8 may function downstream of the cAMP/PKA pathway, and together with Efg1, regulates the expression of hypha-specific genes and genes that are important for the virulence of C. albicans.


mBio ◽  
2016 ◽  
Vol 7 (2) ◽  
Author(s):  
Matthew J. Bush ◽  
Govind Chandra ◽  
Maureen J. Bibb ◽  
Kim C. Findlay ◽  
Mark J. Buttner

ABSTRACTWhiB is the founding member of a family of proteins (theWhiB-like [Wbl] family) that carry a [4Fe-4S] iron-sulfur cluster and play key roles in diverse aspects of the biology of actinomycetes, including pathogenesis, antibiotic resistance, and the control of development. InStreptomyces, WhiB is essential for the process of developmentally controlled cell division that leads to sporulation. The biochemical function of Wbl proteins has been controversial; here, we set out to determine unambiguously if WhiB functions as a transcription factor using chromatin immunoprecipitation sequencing (ChIP-seq) inStreptomyces venezuelae. In the first demonstration ofin vivogenome-wide Wbl binding, we showed that WhiB regulates the expression of key genes required for sporulation by binding upstream of ~240 transcription units. Strikingly, the WhiB regulon is identical to the previously characterized WhiA regulon, providing an explanation for the identical phenotypes ofwhiAandwhiBmutants. Using ChIP-seq, we demonstrated thatin vivoDNA binding by WhiA depends on WhiB and vice versa, showing that WhiA and WhiB function cooperatively to control expression of a common set of WhiAB target genes. Finally, we show that mutation of the cysteine residues that coordinate the [4Fe-4S] cluster in WhiB prevents DNA binding by both WhiB and WhiAin vivo.IMPORTANCEDespite the central importance ofWhiB-like (Wbl) proteins in actinomycete biology, a conclusive demonstration of their biochemical function has been elusive, and they have been difficult to study, particularlyin vitro, largely because they carry an oxygen-sensitive [4Fe-4S] cluster. Here we used genome-wide ChIP-seq to investigate the function ofStreptomycesWhiB, the founding member of the Wbl family. The advantage of this approach is that the oxygen sensitivity of the [4Fe-4S] cluster becomes irrelevant once the protein has been cross-linked to DNAin vivo. Our data provide the most compellingin vivoevidence to date that WhiB, and, by extension, probably all Wbl proteins, function as transcription factors. Further, we show that WhiB does not act independently but rather coregulates its regulon of sporulation genes with a partner transcription factor, WhiA.


2004 ◽  
Vol 3 (4) ◽  
pp. 944-954 ◽  
Author(s):  
Richard Bulmer ◽  
Aline Pic-Taylor ◽  
Simon K. Whitehall ◽  
Kate A. Martin ◽  
Jonathan B. A. Millar ◽  
...  

ABSTRACT In eukaryotes the regulation of gene expression plays a key role in controlling cell cycle progression. Here, we demonstrate that a forkhead transcription factor, Fkh2, regulates the periodic expression of cdc15 + and spo12 + in the M and G1 phases of the cell division cycle in the fission yeast Schizosaccharomyces pombe. We also show that Fkh2 is important for several cell cycle processes, including cell morphology and cell separation, nuclear structure and migration, and mitotic spindle function. We find that the expression of fkh2 + is itself regulated in a cell cycle-dependent manner in G1 coincident with the expression of cdc18 +, a Cdc10-regulated gene. However, fkh2 + expression is independent of Cdc10 function. Fkh2 was found to be phosphorylated during the cell division cycle, with a timing that suggests that this posttranslational modification is important for cdc15 + and spo12 + expression. Related forkhead proteins regulate G2 and M phase-specific gene expression in the evolutionarily distant Saccharomyces cerevisiae, suggesting that these proteins play conserved roles in regulating cell cycle processes in eukaryotes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sarah E. Pierce ◽  
Jeffrey M. Granja ◽  
William J. Greenleaf

AbstractChromatin accessibility profiling can identify putative regulatory regions genome wide; however, pooled single-cell methods for assessing the effects of regulatory perturbations on accessibility are limited. Here, we report a modified droplet-based single-cell ATAC-seq protocol for perturbing and evaluating dynamic single-cell epigenetic states. This method (Spear-ATAC) enables simultaneous read-out of chromatin accessibility profiles and integrated sgRNA spacer sequences from thousands of individual cells at once. Spear-ATAC profiling of 104,592 cells representing 414 sgRNA knock-down populations reveals the temporal dynamics of epigenetic responses to regulatory perturbations in cancer cells and the associations between transcription factor binding profiles.


Sign in / Sign up

Export Citation Format

Share Document