The impact of transposable elements on eukaryotic genomes: From genome size increase to genetic adaptation to stressful environments

Gene ◽  
2012 ◽  
Vol 509 (1) ◽  
pp. 7-15 ◽  
Author(s):  
Benoît Chénais ◽  
Aurore Caruso ◽  
Sophie Hiard ◽  
Nathalie Casse
2019 ◽  
Vol 116 (46) ◽  
pp. 22915-22917 ◽  
Author(s):  
Wai Yee Wong ◽  
Oleg Simakov ◽  
Diane M. Bridge ◽  
Paulyn Cartwright ◽  
Anthony J. Bellantuono ◽  
...  

Transposable elements are one of the major contributors to genome-size differences in metazoans. Despite this, relatively little is known about the evolutionary patterns of element expansions and the element families involved. Here we report a broad genomic sampling within the genus Hydra, a freshwater cnidarian at the focal point of diverse research in regeneration, symbiosis, biogeography, and aging. We find that the genome of Hydra is the result of an expansion event involving long interspersed nuclear elements and in particular a single family of the chicken repeat 1 (CR1) class. This expansion is unique to a subgroup of the genus Hydra, the brown hydras, and is absent in the green hydra, which has a repeat landscape similar to that of other cnidarians. These features of the genome make Hydra attractive for studies of transposon-driven genome expansions and speciation.


2021 ◽  
Vol 22 (2) ◽  
pp. 602
Author(s):  
Elisa Carotti ◽  
Federica Carducci ◽  
Adriana Canapa ◽  
Marco Barucca ◽  
Samuele Greco ◽  
...  

Transposable elements (TEs) represent a considerable fraction of eukaryotic genomes, thereby contributing to genome size, chromosomal rearrangements, and to the generation of new coding genes or regulatory elements. An increasing number of works have reported a link between the genomic abundance of TEs and the adaptation to specific environmental conditions. Diadromy represents a fascinating feature of fish, protagonists of migratory routes between marine and freshwater for reproduction. In this work, we investigated the genomes of 24 fish species, including 15 teleosts with a migratory behaviour. The expected higher relative abundance of DNA transposons in ray-finned fish compared with the other fish groups was not confirmed by the analysis of the dataset considered. The relative contribution of different TE types in migratory ray-finned species did not show clear differences between oceanodromous and potamodromous fish. On the contrary, a remarkable relationship between migratory behaviour and the quantitative difference reported for short interspersed nuclear (retro)elements (SINEs) emerged from the comparison between anadromous and catadromous species, independently from their phylogenetic position. This aspect is likely due to the substantial environmental changes faced by diadromous species during their migratory routes.


2021 ◽  
Vol 70 (1) ◽  
pp. 156-169
Author(s):  
Deepak Ohri

Abstract Gymnosperms show a significantly higher mean (1C=18.16, 1Cx=16.80) and a narrow range (16.89-fold) of genome sizes as compared with angiosperms. Among the 12 families the largest ranges of 1C values is shown by Ephedraceae (4.73-fold) and Cupressaceae (4.45-fold) which are partly due to polyploidy as 1Cx values vary 2.41 and 1.37-fold respectively. In rest of the families which have only diploid taxa the range of 1C values is from 1.18-fold (Cycadaeae) to 4.36-fold (Podocarpaceae). The question is how gymnosperms acquired such big genome sizes despite the rarity of recent instances of polyploidy. A general survey of different families and genera shows that gymnosperms have experienced both increase and decrease in their genome size during evolution. Various genomic components which have accounted for these large genomes have been discussed. The major contributors are the transposable elements particularly LTR-retrotransposons comprising of Ty3gypsy, Ty1copia and gymny superfamilies which are most widespread. The genomes of gymnosperms have been acquiring diverse LTR-RTs in their long evolution in the absence of any efficient mechanism of their elimination. The epigenetic machinery which silences these large tracts of repeat sequences into the stretches of heterochromatin and the adaptive value of these silenced repeat sequences need further investigation.


2019 ◽  
Author(s):  
Michelle C. Stitzer ◽  
Sarah N. Anderson ◽  
Nathan M. Springer ◽  
Jeffrey Ross-Ibarra

Transposable elements (TEs) constitute the majority of flowering plant DNA, reflecting their tremendous success in subverting, avoiding, and surviving the defenses of their host genomes to ensure their selfish replication. More than 85% of the sequence of the maize genome can be ascribed to past transposition, providing a major contribution to the structure of the genome. Evidence from individual loci has informed our understanding of how transposition has shaped the genome, and a number of individual TE insertions have been causally linked to dramatic phenotypic changes. But genome-wide analyses in maize and other taxa have frequently represented TEs as a relatively homogeneous class of fragmentary relics of past transposition, obscuring their evolutionary history and interaction with their host genome. Using an updated annotation of structurally intact TEs in the maize reference genome, we investigate the family-level ecological and evolutionary dynamics of TEs in maize. Integrating a variety of data, from descriptors of individual TEs like coding capacity, expression, and methylation, as well as similar features of the sequence they inserted into, we model the relationship between these attributes of the genomic environment and the survival of TE copies and families. Our analyses reveal a diversity of ecological strategies of TE families, each representing the evolution of a distinct ecological niche allowing survival of the TE family. In contrast to the wholesale relegation of all TEs to a single category of junk DNA, these differences generate a rich ecology of the genome, suggesting families of TEs that coexist in time and space compete and cooperate with each other. We conclude that while the impact of transposition is highly family- and context-dependent, a family-level understanding of the ecology of TEs in the genome can refine our ability to predict the role of TEs in generating genetic and phenotypic diversity.‘Lumping our beautiful collection of transposons into a single category is a crime’-Michael R. Freeling, Mar. 10, 2017


2021 ◽  
Author(s):  
Matias Rodriguez ◽  
Wojciech Makałowski

AbstractTransposable elements (TEs) are major genomic components in most eukaryotic genomes and play an important role in genome evolution. However, despite their relevance the identification of TEs is not an easy task and a number of tools were developed to tackle this problem. To better understand how they perform, we tested several widely used tools for de novo TE detection and compared their performance on both simulated data and well curated genomic sequences. The results will be helpful for identifying common issues associated with TE-annotation and for evaluating how comparable are the results obtained with different tools.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Shujun Ou ◽  
Weija Su ◽  
Yi Liao ◽  
Kapeel Chougule ◽  
Jireh R. A. Agda ◽  
...  

Abstract Background Sequencing technology and assembly algorithms have matured to the point that high-quality de novo assembly is possible for large, repetitive genomes. Current assemblies traverse transposable elements (TEs) and provide an opportunity for comprehensive annotation of TEs. Numerous methods exist for annotation of each class of TEs, but their relative performances have not been systematically compared. Moreover, a comprehensive pipeline is needed to produce a non-redundant library of TEs for species lacking this resource to generate whole-genome TE annotations. Results We benchmark existing programs based on a carefully curated library of rice TEs. We evaluate the performance of methods annotating long terminal repeat (LTR) retrotransposons, terminal inverted repeat (TIR) transposons, short TIR transposons known as miniature inverted transposable elements (MITEs), and Helitrons. Performance metrics include sensitivity, specificity, accuracy, precision, FDR, and F1. Using the most robust programs, we create a comprehensive pipeline called Extensive de-novo TE Annotator (EDTA) that produces a filtered non-redundant TE library for annotation of structurally intact and fragmented elements. EDTA also deconvolutes nested TE insertions frequently found in highly repetitive genomic regions. Using other model species with curated TE libraries (maize and Drosophila), EDTA is shown to be robust across both plant and animal species. Conclusions The benchmarking results and pipeline developed here will greatly facilitate TE annotation in eukaryotic genomes. These annotations will promote a much more in-depth understanding of the diversity and evolution of TEs at both intra- and inter-species levels. EDTA is open-source and freely available: https://github.com/oushujun/EDTA.


1999 ◽  
Vol 266 (1429) ◽  
pp. 1677-1683 ◽  
Author(s):  
P. T. J. Emery ◽  
T. E. Robinson ◽  
R. Duddington ◽  
J. F. Y. Brookfield

2019 ◽  
Vol 20 (22) ◽  
pp. 5755 ◽  
Author(s):  
Denise Drongitis ◽  
Francesco Aniello ◽  
Laura Fucci ◽  
Aldo Donizetti

The biology of transposable elements (TEs) is a fascinating and complex field of investigation. TEs represent a substantial fraction of many eukaryotic genomes and can influence many aspects of DNA function that range from the evolution of genetic information to duplication, stability, and gene expression. Their ability to move inside the genome has been largely recognized as a double-edged sword, as both useful and deleterious effects can result. A fundamental role has been played by the evolution of the molecular processes needed to properly control the expression of TEs. Today, we are far removed from the original reductive vision of TEs as “junk DNA”, and are more convinced that TEs represent an essential element in the regulation of gene expression. In this review, we summarize some of the more recent findings, mainly in the animal kingdom, concerning the active roles that TEs play at every level of gene expression regulation, including chromatin modification, splicing, and protein translation.


Sign in / Sign up

Export Citation Format

Share Document