Age-related gene expression change of GABAergic system in visual cortex of rhesus macaque

Gene ◽  
2016 ◽  
Vol 590 (2) ◽  
pp. 227-233 ◽  
Author(s):  
Chenghong Liao ◽  
Qian Han ◽  
Yuanye Ma ◽  
Bing Su
Genomics ◽  
2020 ◽  
Vol 112 (6) ◽  
pp. 5147-5156
Author(s):  
Min Zhou ◽  
Liang Zhang ◽  
Qiao Yang ◽  
Chaochao Yan ◽  
Peng Jiang ◽  
...  

2016 ◽  
Vol 07 (02) ◽  
pp. 352-423
Author(s):  
ByungHoon B. Kim ◽  
Kaiesa L. Peets ◽  
Jamekia S. Grant ◽  
Joshua S. Hicks ◽  
Dominique C. Zellous ◽  
...  

2005 ◽  
Vol 37 (Supplement) ◽  
pp. S243
Author(s):  
Shlomit Radom-Aizik ◽  
Shlomo Hayek ◽  
Gidi Rechavi ◽  
Ninette Amariglio ◽  
Hillel Halkin ◽  
...  

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Jialiang Yang ◽  
◽  
Tao Huang ◽  
Francesca Petralia ◽  
Quan Long ◽  
...  

Abstract Aging is one of the most important biological processes and is a known risk factor for many age-related diseases in human. Studying age-related transcriptomic changes in tissues across the whole body can provide valuable information for a holistic understanding of this fundamental process. In this work, we catalogue age-related gene expression changes in nine tissues from nearly two hundred individuals collected by the Genotype-Tissue Expression (GTEx) project. In general, we find the aging gene expression signatures are very tissue specific. However, enrichment for some well-known aging components such as mitochondria biology is observed in many tissues. Different levels of cross-tissue synchronization of age-related gene expression changes are observed and some essential tissues (e.g., heart and lung) show much stronger “co-aging” than other tissues based on a principal component analysis. The aging gene signatures and complex disease genes show a complex overlapping pattern and only in some cases, we see that they are significantly overlapped in the tissues affected by the corresponding diseases. In summary, our analyses provide novel insights to the co-regulation of age-related gene expression in multiple tissues; it also presents a tissue-specific view of the link between aging and age-related diseases.


2017 ◽  
Author(s):  
Trevor Martin ◽  
Hunter B. Fraser

AbstractAge is the primary risk factor for many of the most common human diseases—particularly neurodegenerative diseases—yet we currently have a very limited understanding of how each individual’s genome affects the aging process. Here we introduce a method to map genetic variants associated with age-related gene expression patterns, which we call temporal expression quantitative trait loci (teQTL). We found that these loci are markedly enriched in the human brain and are associated with neurodegenerative diseases such as Alzheimer’s disease and Creutzfeldt-Jakob disease. Examining potential molecular mechanisms, we found that age-related changes in DNA methylation can explain some cis-acting teQTLs, and that trans-acting teQTLs can be mediated by microRNAs. Our results suggest that genetic variants modifying age-related patterns of gene expression, acting through both cis- and trans-acting molecular mechanisms, could play a role in the pathogenesis of diverse neurological diseases.


Sign in / Sign up

Export Citation Format

Share Document