Transcriptome profiling analysis of tea plant (Camellia sinensis) using Oxford Nanopore long-read RNA-Seq technology

Gene ◽  
2021 ◽  
Vol 769 ◽  
pp. 145247
Author(s):  
Fen Wang ◽  
Zhi Chen ◽  
Huimin Pei ◽  
Zhiyou Guo ◽  
Di Wen ◽  
...  
PLoS ONE ◽  
2015 ◽  
Vol 10 (4) ◽  
pp. e0125031 ◽  
Author(s):  
Chao Zheng ◽  
Lei Zhao ◽  
Yu Wang ◽  
Jiazhi Shen ◽  
Yinfei Zhang ◽  
...  
Keyword(s):  

2019 ◽  
Vol 140 (2) ◽  
pp. 341-356 ◽  
Author(s):  
Yang Qin ◽  
Hee-Jong Woo ◽  
Kong-Sik Shin ◽  
Myung-Ho Lim ◽  
Seong-Kon Lee

Abstract Beta-carotene-enhanced transgenic soybeans, harboring genes encoding phytoene synthase and carotene desaturase under the control of a seed-specific promoter, were developed to alleviate vitamin A deficiency in populations, the diet of which was deficient in this vitamin. However, metabolic engineering of carotenoid biosynthetic pathways often has unintended effects, leading to major metabolic changes in plants that harbor endogenous beta-carotene biosynthesis pathways. In the present study, we performed transcriptome profiling analysis using RNA-seq to investigate the changes in the transcriptome and some unintended pleiotropic effects on the leaves, stems, roots, and seeds of beta-carotene-enhanced transgenic soybean lines, and compared them to those of their non-transgenic counterpart donor variety Kwangan. We observed that transgenic soybeans showed significant changes in secondary metabolic biosynthesis in leaves and down-regulated galactose metabolism in roots. Differentially expressed genes in the transgenic group, which were significantly up-regulated, included those encoding glycine-aspartic acid-serine-leucine-motif esterase/lipase, known as cutin synthase and cutinase. These results suggested enhanced beta-carotene biosynthesis may affect related enzymes to carbohydrate metabolism and fatty acid metabolism. Hence, we speculated that upregulation of cutin polymerization resulted in thickened seed coat and delayed seed germination of transgenic soybeans. Furthermore, downregulation of raffinose family oligosaccharide biosynthesis may cause redundancy of myo-inositol, a substrate of phytin formation. This could lead to phytic globoids accumulation in transgenic soybean seeds. The present imformation would be important for transgenic plant development via carotenoid metabolic engineering, with focus on beta-carotene over-production.


2020 ◽  
Author(s):  
Norbert Moldován ◽  
Kálmán Szenthe ◽  
Ferenc Bánáti ◽  
Ádám Fülöp ◽  
Zsolt Csabai ◽  
...  

Abstract Epstein-Barr virus (EBV) is an important human pathogenic gammaherpesvirus with carcinogenic potential. The EBV transcriptome has previously been analyzed using both Illumina-based short read- and Pacific Biosciences RS II-based long-read sequencing technologies. In this work, we use the Oxford Nanopore Technologies MinION platform for the characterization of the EBV transcriptomic architecture. Both amplified and non-amplified cDNA sequencings were applied for the generation of transcription reads, including both oligo-d(T) and random oligonucleotide-primed reverse transcription. EBV transcripts are identified and annotated using the LoRTIA software suite developed in our laboratory. This study detected novel short genes (embedded into longer host genes) containing 5’-truncated in-frame open reading frames (ORFs), which might encode N-terminally truncated proteins. We also detected a number of novel non-coding RNAs and transcript length isoforms encoded by the same genes but differing in their start and/or end sites. This study also reports the discovery of novel splice isoforms, many of which may represent altered coding potential, and of novel Ori-associated RNA molecules. Additionally, novel mono- and polycistronic, as well as complex transcripts have been uncovered. An intricate meshwork of transcriptional overlaps has also been revealed.


2021 ◽  
Author(s):  
Nathalie Lehmann ◽  
Sandrine Perrin ◽  
Claire Wallon ◽  
Xavier Bauquet ◽  
Vivien Deshaies ◽  
...  

Motivation: Core sequencing facilities produce huge amounts of sequencing data that need to be analysed with automated workflows to ensure reproducibility and traceability. Eoulsan is a versatile open-source workflow engine meeting the needs of core facilities, by automating the analysis of a large number of samples. Its core design separates the description of the workflow from the actual commands to be run. This originality simplifies its usage as the user does not need to handle code, while ensuring reproducibility. Eoulsan was initially developed for bulk RNA-seq data, but the transcriptomics applications have recently widened with the advent of long-read sequencing and single-cell technologies, calling for the development of new workflows. Result: We present Eoulsan 2, a major update that (i) enhances the workflow manager itself, (ii) facilitates the development of new modules, and (iii) expands its applications to long reads RNA-seq (Oxford Nanopore Technologies) and scRNA-seq (Smart-seq2 and 10x Genomics). The workflow manager has been rewritten, with support for execution on a larger choice of computational infrastructure (workstations, Hadoop clusters, and various job schedulers for cluster usage). Eoulsan now facilitates the development of new modules, by reusing wrappers developed for the Galaxy platform, with support for container images (Docker or Singularity) packaging tools to execute. Finally, Eoulsan natively integrates novel modules for bulk RNA-seq, as well as others specifically designed for processing long read RNA-seq and scRNA-seq. Eoulsan 2 is distributed with ready-to-use workflows and companion tutorials. Availability and implementation: Eoulsan is implemented in Java, supported on Linux systems and distributed under the LGPL and CeCILL-C licenses at: http://outils.genomique.biologie.ens.fr/eoulsan/. The source code and sample workflows are available on GitHub: https://github.com/GenomicParisCentre/eoulsan. A GitHub repository for modules using the Galaxy tool XML syntax is further provided at: https://github.com/GenomicParisCentre/eoulsan-tools


Author(s):  
Gábor Torma ◽  
Dóra Tombácz ◽  
Zsolt Csabai ◽  
Dániel Göbhardter ◽  
Zoltán Deim ◽  
...  

In the last couple of years, the implementation of long-read sequencing (LRS) technologies for transcriptome profiling has uncovered an extreme complexity of viral gene expression. In this study, we carried out a systematic analysis on the pseudorabies virus transcriptome by combining our current data obtained by using Pacific Biosciences Sequel and Oxford Nanopore Technologies MinION sequencings with our earlier data generated by other LRS and short-read sequencing techniques. As a result, we identified a number of novel genes, transcripts, and transcript isoforms, including splice and length variants, and also confirmed earlier annotated RNA molecules. One of the major findings of this study is the discovery of a large number of 5’-truncated putative mRNAs embedded into larger host mRNAs. A large fraction of these RNA molecules contain in-frame ORFs, which may encode N-terminally truncated polypeptides. These study demonstrates that the PRV transcriptome is much more complex than previously appreciated.


Author(s):  
Akihito Otsuki ◽  
Yasunobu Okamura ◽  
Yuichi Aoki ◽  
Noriko Ishida ◽  
Kazuki Kumada ◽  
...  

Our body responds to environmental stress by changing the expression levels of a series of cytoprotective enzymes/proteins through multilayered regulatory mechanisms, including the KEAP1-NRF2 system. While NRF2 upregulates the expression of many cytoprotective genes, there are fundamental limitations in short-read RNA sequencing (RNA-Seq), resulting in confusion regarding interpreting the effectiveness of cytoprotective gene induction at transcript level. To precisely delineate isoform usage in the stress response, we conducted independent full-length transcriptome profiling (isoform sequencing; Iso-Seq) analyses of lymphoblastoid cells from three volunteers under normal and electrophilic stress-induced conditions. We first determined the first exon usage in KEAP1 and NFE2L2 (encoding NRF2) and found the presence of transcript diversity. We then examined changes in isoform usage of NRF2 target genes under stress conditions and identified a few isoforms dominantly expressed in the majority of NRF2 target genes. The expression levels of isoforms determined by Iso-Seq analyses showed striking differences from those determined by short-read RNA-Seq; the latter could be misleading in regards to the abundance of transcripts. These results support that transcript usage is tightly regulated to produce functional proteins under electrophilic stress. Our present study strongly argues that there are important benefits that can be achieved by long-read transcriptome sequencing.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiaozeng Mi ◽  
Yi Yue ◽  
Mengsha Tang ◽  
Yanlin An ◽  
Hui Xie ◽  
...  

AbstractAlternative splicing (AS) increases the diversity of transcripts and proteins through the selection of different splice sites and plays an important role in the growth, development and stress tolerance of plants. With the release of the reference genome of the tea plant (Camellia sinensis) and the development of transcriptome sequencing, researchers have reported the existence of AS in tea plants. However, there is a lack of a platform, centered on different RNA-seq datasets, that provides comprehensive information on AS.To facilitate access to information on AS and reveal the molecular function of AS in tea plants, we established the first comprehensive AS database for tea plants (TeaAS, http://www.teaas.cn/index.php). In this study, 3.96 Tb reads from 66 different RNA-seq datasets were collected to identify AS events. TeaAS supports four methods of retrieval of AS information based on gene ID, gene name, annotation (non-redundant/Kyoto encyclopedia of genes and genomes/gene ontology annotation or chromosomal location) and RNA-seq data. It integrates data pertaining to genome annotation, type of AS event, transcript sequence, and isoforms expression levels from 66 RNA-seq datasets. The AS events resulting from different environmental conditions and that occurring in varied tissue types, and the expression levels of specific transcripts can be clearly identified through this online database. Moreover, it also provides two useful tools, Basic Local Alignment Search Tool and Generic Genome Browser, for sequence alignment and visualization of gene structure.The features of the TeaAS database make it a comprehensive AS bioinformatics platform for researchers, as well as a reference for studying AS events in woody crops. It could also be helpful for revealing the novel biological functions of AS in gene regulation in tea plants.


Sign in / Sign up

Export Citation Format

Share Document