Study of synergistic effect of copper and silver nanoparticles with 10% benzalkonium chloride on Pseudomonas aeruginosa

Gene Reports ◽  
2020 ◽  
Vol 20 ◽  
pp. 100743
Author(s):  
Milad Mohammadyari ◽  
Ziba Mozaffari ◽  
Bahareh Rahimian Zarif
2019 ◽  
Vol 47 (1) ◽  
pp. 2465-2472 ◽  
Author(s):  
Muhammad Salman ◽  
Rizwana Rizwana ◽  
Hayat Khan ◽  
Iqbal Munir ◽  
Muhammad Hamayun ◽  
...  

2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S794-S795
Author(s):  
Mary Francine P Chua ◽  
Syeda Sara Nida ◽  
Jerry Lawhorn ◽  
Janak Koirala

Abstract Background Multidrug-resistant (MDR) and extensively drug-resistant (XDR) Pseudomonas aeruginosa (PA) have limited therapeutic options for treatment. Ceftolozane/tazobactam is a newer anti-pseudomonal drug effective against resistant PA infections, however resistance against this drug has now also developed and is increasing. In this study, we explored the combination of ceftolozane/tazobactam (CT) and meropenem (MP) as a possible effective regimen against MDR and XDR PA. Methods We obtained 33 non-duplicate isolates of MDR and XDR PA grown from blood, urine and respiratory samples collected from patients admitted between 2015 and 2019 at our two affiliate teaching hospitals. MDR PA was defined as resistance to 3 or more classes of anti-pseudomonal antibiotics, and XDR PA as resistance to all but two or less classes of anti-pseudomonal antibiotics. Antimicrobial preparations of both MP and CT were made according to manufacturer instructions. Susceptibility testing was performed using the checkerboard method in accordance to CLSI guidelines (CLSI M100, 2017). The ATCC 27853 strain of PA used as control. Synergy, additive effect, indifference and antagonism were defined as FIC (fractional inhibitory concentration) indices of ≤0.5, >0.5 to <1, >1 to <4, and >4, respectively. Results Thirteen (39%) of 33 PA isolates were classified as XDR, while 20 (61%) PA isolates were MDR. All isolates were resistant to MP (MIC50 >32 ug/mL), while only 2 (6%) isolates were susceptible to CT (MIC50 64 ug/mL). A synergistic effect was seen in 9 (27.3%) of PA isolates (FIC index range 0.28 to 0.5)— 2 of which were XDR PA, and 7 were MDR PA. An additive effect was seen in 12 (36.4%), with indifference seen in 12 (36.4%) of isolates. In this study, no antagonism was seen when CT and MP were combined. Conclusion When used in combination, CT and MP can exert a synergistic effect against MDR and XDR PA. Additive effect and indifference can also be seen when both antibiotics were used. Moreover, there was no antagonism seen when both antibiotics were combined. This study shows that the use of CT and MP in combination may be an option against XDR and MDR PA infections. Disclosures All Authors: No reported disclosures


2021 ◽  
Vol 138 ◽  
pp. 106850
Author(s):  
A.S. Nikolov ◽  
N.E. Stankova ◽  
D.B. Karashanova ◽  
N.N. Nedyalkov ◽  
E.L. Pavlov ◽  
...  

2021 ◽  
Vol 16 (2) ◽  
pp. 231-238
Author(s):  
T. A. Grodetskaia ◽  
O. A. Fedorova ◽  
P. M. Evlakov ◽  
O. Yu. Baranov ◽  
O. V. Zakharova ◽  
...  

2021 ◽  
Author(s):  
Guofeng Su ◽  
Ximing Zhong ◽  
Songfa Qiu ◽  
Jiajin Fan ◽  
hongjun zhou ◽  
...  

Abstract In this work, a novel antibacterial nanocomposite system was developed using mesoporous silica (MSN) as an effective nanocarrier, and the resultant nanocomposites demonstrated remarkable antibacterial performance due to the synergistic effect among nano zinc oxides, silver nanoparticles, and polydopamine (PDA). The successful synthesis of MSN/ZnO@PDA/Ag nanocomposites was confirmed. The physicochemical properties and the morphologies of these nanocomposites were investigated. It was found that the particle size increased along with the evolution of these nanocomposites. Besides, nano zinc oxides were formed in the nanoconfinement channel of mesoporous silica with a particle size about 2 nm, and that of silver nanoparticle was less than 50 nm. In addition, the results revealed that the presence of mesoporous silica could effectively prevent the formation of large-size silver nanoparticles and facilitate their well dispersion. Due to the synergistic effect among nano zinc oxides, silver nanoparticles, and polydopamine, these nanocomposites exhibited remarkable antibacterial performance even at a low concentration of 313 ppm, and the antibacterial mechanism was also elucidated. Therefore, this work provides a facile and controllable approach to preparing synergistically antibacterial nanocomposites, and the remarkable antibacterial performance make them suitable for practical applications.


Sign in / Sign up

Export Citation Format

Share Document