scholarly journals Spatiotemporal variation of vertical displacement driven by seasonal hydrological water storage changes in Kalimantan, Indonesia from GPS observation

2020 ◽  
Vol 11 (5) ◽  
pp. 350-357
Author(s):  
Leni Sophia Heliani ◽  
Cecep Pratama ◽  
Danardono ◽  
Nurrohmat Widjajanti ◽  
Eko Hanudin
2013 ◽  
Vol 405-408 ◽  
pp. 428-433
Author(s):  
Fu Yong Chu ◽  
Jun Gao Zhu

Abstract: The stress and deformation of rock-fill dam with asphalt concrete core wall founded on deep overburden is calculated and analyzed by Duncan E-ν model and double-yield-surface model through three-dimensional finite element method. The stress and deformation of dams in water storage period is compared by the two models, the results show that the deformation distribution of dam core via two different models are coincide one another. The horizontal displacement and vertical displacement of rock-fill dam with asphalt concrete core wall by double-yield-surface model is smaller than which by Duncan E-ν model in the period of water storage. Furthermore, the horizontal displacement and vertical displacement by double-yield-surface model, which are close to the practical test data through the deformation via two models are in good agreement. The analysis of core-wall stress via double-yield-surface model is more reasonable than the Duncan E-ν model. The analysis result of resisting hydraulic fracturing of core dams by DuncanE-ν model is coincide which of core dams by double-yield-surface model.


2020 ◽  
Author(s):  
Gaohong Yin ◽  
Barton Forman ◽  
Jing Wang

<p>Accurate estimation of terrestrial water storage (TWS) is crucial in the characterization of the terrestrial hydrologic cycle. The launch of GRACE and GRACE Follow-On (GRACE-FO) missions provide an unprecedented opportunity to monitor the change in TWS across the globe. However, the spatial and temporal resolutions provided by GRACE/GRACE-FO are often too coarse for many hydrologic applications. Land surface models (LSMs) provide estimates of TWS at a finer spatio-temporal resolution, but most LSMs lack complete, all-encompassing physical representations of the hydrological system such as deep groundwater storage or anthropogenic influences (e.g., groundwater pumping and surface water regulation). In recent years, geodetic measurements from the ground-based Global Positioning System (GPS) network have been increasingly used in hydrologic studies based on the elastic response of the Earth’s surface to mass redistribution. This study explores the potential of improving our knowledge in TWS change via merging the information provided by ground-based GPS, GRACE, and the NASA Catchment Land Surface Model (Catchment), especially for the TWS change during an extended drought period.</p> <p> </p> <p>Ground-based GPS observations of vertical displacement and GRACE TWS retrievals were assimilated into the Catchment LSM, respectively, using an ensemble Kalman filter (EnKF) in order to improve the estimation accuracy of TWS change. The data assimilation (DA) framework effectively downscaled TWS into its constituent components (e.g., snow and soil moisture) as well as improved estimates of hydrologic fluxes (e.g., runoff). Estimated TWS change from the open loop (OL; without assimilation) and GPS DA (i.e., using GPS-based vertical displacement during assimilation) simulations were evaluated against GRACE TWS retrievals. Results show that GPS DA improved estimation accuracy of TWS change relative to the OL, especially during an extended drought period post-2011 in the western United States (e.g., the correlation coefficient R<sub>OL</sub> = 0.46 and R<sub>GPSDA</sub> = 0.82 in the Great Basin). The performance of GPS DA and GRACE DA in estimating TWS constituent components and hydrologic fluxes were evaluated against in situ measurements. Results show that GPS DA improves snow water equivalent (SWE) estimates with improved R values found over 76% of all pixels that are collocated with in situ stations in the Great Basin. The findings in this study indicate the potential use of GPS DA and GRACE DA for TWS characterization. Both GRACE and ground-based GPS provide complementary TWS change information, which helps correct for missing physics in the LSM. Additionally, this study provides motivation for a multi-variate assimilation approach to simultaneously merge both GRACE and ground-based GPS into an LSM to further improve modeled TWS and its constituent components.</p>


Entropy ◽  
2019 ◽  
Vol 21 (7) ◽  
pp. 664 ◽  
Author(s):  
Liu ◽  
Fok ◽  
Tenzer ◽  
Chen ◽  
Chen

Global navigation satellite systems (GNSS) techniques, such as GPS, can be used to accurately record vertical crustal movements induced by seasonal terrestrial water storage (TWS) variations. Conversely, the TWS data could be inverted from GPS-observed vertical displacement based on the well-known elastic loading theory through the Tikhonov regularization (TR) or the Helmert variance component estimation (HVCE). To complement a potential non-uniform spatial distribution of GPS sites and to improve the quality of inversion procedure, herein we proposed in this study a novel approach for the TWS inversion by jointly supplementing GPS vertical crustal displacements with minimum usage of external TWS-derived displacements serving as pseudo GPS sites, such as from satellite gravimetry (e.g., Gravity Recovery and Climate Experiment, GRACE) or from hydrological models (e.g., Global Land Data Assimilation System, GLDAS), to constrain the inversion. In addition, Akaike’s Bayesian Information Criterion (ABIC) was employed during the inversion, while comparing with TR and HVCE to demonstrate the feasibility of our approach. Despite the deterioration of the model fitness, our results revealed that the introduction of GRACE or GLDAS data as constraints during the joint inversion effectively reduced the uncertainty and bias by 42% and 41% on average, respectively, with significant improvements in the spatial boundary of our study area. In general, the ABIC with GRACE or GLDAS data constraints displayed an optimal performance in terms of model fitness and inversion performance, compared to those of other GPS-inferred TWS methodologies reported in published studies.


Author(s):  
Emilda Emilda

The limitations of waste management in the Cipayung Landfill (TPA) causing a buildup of garbage up to more than 30 meters. This condition has a health impact on people in Cipayung Village. This study aims to analyze the impact of waste management at Cipayung Landfill on public health in Cipayung Village, Depok City. The research is descriptive qualitative. Data obtained by purposive sampling. Data was collected by interviews, observation and documentation. Based on interviews with 30 respondents, it was found that the most common diseases were diarrhea, then other types of stomach ailments, subsequent itching on the skin and coughing. This is presumably because the environmental conditions in the form of unhealthy air and water and clean and healthy living behaviors (PHBS) have not become the habit of the people. The results indicated that there were no respondents who had implemented all of these criteria. In general respondents have implemented  3 criteria, namely maintaining hair hygiene, maintaining skin cleanliness, and maintaining hand hygiene. While maintaining clean water storage is the most often overlooked behavior. To minimize this health impact, improvements in waste management in Cipayung landfill are needed along with continuous socialization and education to develop PHBS habits and the importance of maintaining a clean environment.


2019 ◽  
Vol 3 (1) ◽  
pp. 1-14
Author(s):  
Philip Brick ◽  
Kent Woodruff

This case explores the Methow Beaver Project (MBP), an ambitious experiment to restore beaver (Castor canadensis) to a high mountain watershed in Washington State, USA. The Pacific Northwest is already experiencing weather regimes consistent with longer term climate projections, which predict longer and drier summers and stronger and wetter winter storms. Ironically, this combination makes imperative more water storage in one of the most heavily dammed regions in the nation. Although the positive role that beaver can play in watershed enhancement has been well known for decades, no project has previously attempted to re-introduce beaver on a watershed scale with a rigorous monitoring protocol designed to document improved water storage and temperature conditions needed for human uses and aquatic species. While the MBP has demonstrated that beaver can be re-introduced on a watershed scale, it has been much more difficult to scientifically demonstrate positive changes in water retention and stream temperature, given hydrologic complexity, unprecedented fire and floods, and the fact that beaver are highly mobile. This case study can help environmental studies students and natural resource policy professionals think about the broader challenges of diffuse, ecosystem services approaches to climate adaptation. Beaver-produced watershed improvements will remain difficult to quantify and verify, and thus will likely remain less attractive to water planners than conventional storage dams. But as climate conditions put additional pressure on such infrastructure, it is worth considering how beaver might be employed to augment watershed storage capacity, even if this capacity is likely to remain at least in part inscrutable.


Sign in / Sign up

Export Citation Format

Share Document