scholarly journals The impact of land use and climate change on late Holocene and future suspended sediment yield of the Meuse catchment

Geomorphology ◽  
2009 ◽  
Vol 103 (3) ◽  
pp. 389-400 ◽  
Author(s):  
Philip J. Ward ◽  
Ronald T. van Balen ◽  
Gert Verstraeten ◽  
Hans Renssen ◽  
Jef Vandenberghe
Author(s):  
Ludmila V. Kuksina

Abstract. Key factors of sediment yield formation and variability in the Kamchatsky Krai are relief characteristics and climate (especially precipitation). The last research in climate change in Kamchatka demonstrates climate warming – mean annual air temperature has increased on 1.5 ∘C during the period from 1951 to 2009 in average (the maximum increase was revealed in the west of Kamchatka and in the Kamchatka River valley, the minimum one – in the extreme south and north). Decrease of annual precipitation was observed at the same period. In addition frequency and intensity of precipitation is growing. Thereby described climate changes in Kamchatka influence on sediment yield characteristics directly (influence of precipitation on surface washout formation) and indirectly (through water runoff and hydrological regime of rivers changes). Analysis of spatio-temporal variability in suspended sediment yield demonstrated decrease since late 1970–early 1980 in the most part of rivers in the Kamchatsky Krai. Revealed fluctuations demonstrate very good coincidence with precipitation amount variability. Decrease of precipitation leads to corresponding diminution of rainfall erosive factor in the territory which is the key factor of suspended sediment yield formation and variability in rivers in the Kamchatsky Krai. The value of reduction varies from 1 % to 45 % and involves decrease of erosion rates in the territory. Thereby climate change influences on suspended sediment yield in multiple-valued way. Income of friable volcanic deposits on the catchment surface is the key factor of suspended sediment yield formation and variability in some river basins under the impact of volcanic eruptions, and in combination with raising precipitation it can lead to catastrophic increase of sediment yield.


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1831 ◽  
Author(s):  
Donatella Pavanelli ◽  
Claudio Cavazza ◽  
Stevo Lavrnić ◽  
Attilio Toscano

Anthropogenic activities, and in particular land use/land cover (LULC) changes, have a considerable effect on rivers’ flow rates and their morphologies. A representative example of those changes and resulting impacts on the fluvial environment is the Reno Mountain Basin (RMB), located in Northern Italy. Characterized by forest exploitation and agricultural production until World War II, today the RMB consists predominantly of meadows, forests and uncultivated land, as a result of agricultural land abandonment. This study focuses on the changes of the Reno river’s morphology since the 1950s, with an objective of analyzing the factors that caused and influenced those changes. The factors considered were LULC changes, the Reno river flow rate and suspended sediment yield, and local climate data (precipitation and temperature). It was concluded that LUCL changes caused some important modifications in the riparian corridor, riverbed size, and river flow rate. A 40–80% reduction in the river bed area was observed, vegetation developed in the riparian buffer strips, and the river channel changed from braided to a single channel. The main causes identified are reductions in the river flow rate and suspended sediment yield (−36% and −38%, respectively), while climate change did not have a significant effect.


Hydrology ◽  
2018 ◽  
Vol 6 (1) ◽  
pp. 2 ◽  
Author(s):  
Kinati Chimdessa ◽  
Shoeb Quraishi ◽  
Asfaw Kebede ◽  
Tena Alamirew

In the Didessa river basin, which is found in Ethiopia, the human population number is increasing at an alarming rate. The conversion of forests, shrub and grasslands into cropland has increased in parallel with the population increase. The land use/land cover change (LULCC) that has been undertaken in the river basin combined with climate change may have affected the Didessa river flow and soil loss. Therefore, this study was designed to assess the impact of LULCC on the Didessa river flow and soil loss under historical and future climates. Land use/land cover (LULC) of the years 1986, 2001 and 2015 were independently combined with the historical climate to assess their individual impacts on river flow and soil loss. Further, the impact of future climates under Representative Concentration Pathways (RCP2.6, RCP4.5 and RCP8.5) scenarios on river flow and soil loss was assessed by combining the pathways with the 2015 LULC. A physically based Soil and Water Assessment Tool (SWAT2012) model in the ArcGIS 10.4.1 interface was used to realize the purpose. Results of the study revealed that LULCC that occurred between 1986 and 2015 resulted in increased average sediment yield by 20.9 t ha−1 yr−1. Climate change under RCP2.6, RCP4.5 and RCP8.5 combined with 2015 LULC increased annual average soil losses by 31.3, 50.9 and 83.5 t ha−1 yr−1 compared with the 2015 LULC under historical climate data. It was also found that 13.4%, 47.1% and 87.0% of the total area may experience high soil loss under RCP2.6, RCP4.5 and RCP8.5, respectively. Annual soil losses of five top-priority sub catchments range from 62.8 to 57.7 per hectare. Nash Stuncliffe Simulation efficiency (NSE) and R2 values during model calibration and validation indicated good agreement between observed and simulated values both for flow and sediment yield.


2008 ◽  
Vol 87 (2) ◽  
pp. 189-193 ◽  
Author(s):  
P.J. Ward

AbstractDespite increasing research into changes in the discharge of the River Meuse, estimates of the river’s sediment yield are less forthcoming. Three published studies (in 1883, 1982, and 1987) have estimated suspended sediment yield at the Belgian-Dutch border; the latter two studies surmise that this increased substantially between the late 19th and 20th Centuries. In this paper a more recent and longer time-series of observed discharge and suspended sediment data (1995 – 2005) is used to estimate mean annual suspended sediment yield (ca. 386,000 Mg.a−1), and the results of the previous studies are revisited. New insights suggest that those studies do not in themselves provide evidence of increased sediment yield: the higher estimates in the late 20th Century could equally be due to interannual variability or methodological differences. Furthermore, there has been no significant increase in rainfall erosivity between the late 19th and 20th Centuries, and the effect of land use change over that time would have been to cause a decrease in suspended sediment yield, rather than an increase.


2021 ◽  
Vol 145 (5-6) ◽  
pp. 249-261
Author(s):  
Tark Çtgez ◽  
Refik Karagül ◽  
Mehmet Özcan

Topography, geological structure and land use play a determinative role in the streamflow and total suspended sediment yield of watersheds having similar climate, soil and vegetation characteristics. In order to facilitate sustainable water resource management and effective land use planning, there is an increasing need for research investigating the effects of these factors. This study was carried out in forested and agricultural dominated subwatersheds of the Big Melen watershed in the Western Black Sea Region of Turkey. Hazelnut plantations are grown on most of the agricultural areas in both watersheds. The forested watershed has a steep topography and its geological structure consists of sandstone-mudstone and sedimentary rock. The agricultural watershed area is larger and unlike the forested watershed, there is argillaceous limestone in its geological structure. The precipitation, streamflow and total suspended sediment yield in the watersheds were measured for two years. The total precipitation of the study area over the two years was 2217.3 mm. The water yield of the forested watershed was 867.6 mm, while that of the agricultural watershed was 654.9 mm. In the two years, the total suspended sediment transported from the forested watershed was 19.51 t ha<sup>-1</sup> and from the agricultural watershed 7.70 t ha<sup>-1</sup>. However, except for the high values measured after an extreme rainfall event, the unit surface suspended sediment yield of the agricultural watershed was found to be higher than that of the forested watershed. These findings showed that watershed characteristics such as slope, geological structure and rainfall intensity may be more effective on the streamflow and total suspended sediment yield of the watersheds than land use.


Author(s):  
Anatolii Tsyplenkov ◽  
Valentin Golosov ◽  
Pelagiya Belyakova

Quantifying and understanding catchment sediment yields is crucial both from a scientific and environmental management perspective. To deepen the understanding of land use impacts and climate change on sediment load, we explore mechanisms of the suspended sediment yield formation in the Northern Caucasus during the Anthropocene. We examine how sediment flux of various river basins with different land-use/landcover and glacier cover changes during the 1925-2018 period. Our analysis is based on observed mean annual suspended sediment discharges (SSD, kg·s−1) and annual fluxes (SSL, t·yr−1) from 33 Roshydromet gauging stations (Russia). SSL series have been analyzed to detect statistically significant changes during the 1925-2018 period. The occurrence of abrupt change points in SSD was investigated using cumulative sum (CUSUM) charts. We found that SSL has decreased by −1.81% per year on average at most gauges. However, the decline was not linear. Several transition years are expected in the region: increasing trends from the 1950s and decreasing trends from 1988-1994. Correlation analyses showed that variation in SSL trend values is mainly explained by gauging station altitude, differences in land use (i.e., the fraction of cropland), and catchment area. Nonetheless, more accurate quantifications of SSL trend values and more refined characterizations of the catchments regarding (historical) land use, soil types/lithology, weather conditions, and topography may reveal other tendencies.


2013 ◽  
Vol 10 (10) ◽  
pp. 12417-12451 ◽  
Author(s):  
X. Ma ◽  
X. Lu ◽  
M. van Noordwijk ◽  
J. Xu ◽  
J. Li

Abstract. Suspended sediment transport in rivers is controlled by terrain, climate and human activities. These variables affect hillslope and riverbank erosion at the source, transport velocities and sedimentation opportunities in the river channel, and entrapment in reservoirs. The relative importance of those factors varies with context but correct attribution is important for policy debates. We analyzed data from the Kejie watershed in the upper Salween, where a combination of land cover change (reforestation, soil and water conservation measures) and river channel engineering (sand mining and check dam construction) interact with a changing climate. Long-term records (1971–2010) of river flow and suspended sediment loads were combined with five land use maps from 1974, 1991, 2001, 2006 and 2009. Average annual sediment yield decreased from 13.7 t ha−1 yr−1 to 8.3 t ha−1 yr−1 between the 1971–1985 and 1986–2010. A distributed hydrological model (Soil and Water Assessment Tools, SWAT) was set up to simulate the sediment sourcing and transport process. By recombining land use and climate data for the two periods in model scenarios, the contribution of these two factors could be assessed with engineering effects derived from residual measured minus modeled transport. Overall 46% of the decrease was due to from land use and land cover change, 25% to climate change to a milder rainfall regime, 25% to engineering measures, and 4% to simulation bias. Mean annual suspended sediment yield decreased exponentially with the increase of forest cover. We discuss the implications for future soil and water conservation initiatives in China.


Sign in / Sign up

Export Citation Format

Share Document