Deposition morphology in large-scale laboratory stony debris flows

Geomorphology ◽  
2021 ◽  
pp. 107992
Author(s):  
Ivo Baselt ◽  
Gustavo Q. de Oliveira ◽  
Jan-Thomas Fischer ◽  
Shiva P. Pudasaini
2021 ◽  
Author(s):  
Juan Daniel Rios-Arboleda

<p>This research expands the original analysis of Baker and Costa (1987) including data from Europe and South America with the objective to understand if there are emerging latitudinal patterns. In addition, the threshold proposed by Zimmermann et al. (1997) it is evaluated with the data from tropical zones finding that this is a good predictor.</p><p>Mainly, recent Debris Flow occurred in South America are analyzed with the aim of identifying the best risk management strategies and their replicability for developing countries, particularly, the cases that have occurred in Colombia and Venezuela in the last 30 years are analyzed in order to compare management strategies and understand which are the most vulnerable areas to this phenomenon.</p><p>It is concluded that large-scale and multinational projects such as SED ALP are required in South America to better characterize events that have left multiple fatalities (sometimes hundreds of people) and better understand how to manage the risk on densely populated areas.</p><p>Finally, the use of amateur videos is proposed to characterize these events in nations with limited budgets for projects such as SED ALP, methodology that will be described extensively in later works.</p>


2014 ◽  
Vol 711 ◽  
pp. 388-391
Author(s):  
Ji Wei Xu ◽  
Ming Dong Zhang ◽  
Mao Sheng Zhang

On July 9 2013, debris flows occurred around Longchi town with large scale and wide harm, which was a great threat to people's life and property as well as reconstruction work. Debris flow ditch in the surrounding town was studied. This paper focused on loose materials, topography and rainfall characteristics, and explored the formation mechanism of debris flow in Longchi town. The result shows that: a small catchment area in valleys also have the risk of large range of accumulation of debris flow, the debris flow is caused by a lot of loose materials in mountains after earthquake and extreme rainfall. Research results contribute to a better understanding of trigger condition of debris flow after earthquake.


2018 ◽  
Vol 175 ◽  
pp. 04025
Author(s):  
Pengyu Chen ◽  
Ying Kong

Luanchuan County, located in the mountains of Western Henan Province, is characterized by poor geological environment and abundant material sources and rainfalls. Debris flows have occurred many times in this county, and in some gully debris flows exhibit a large scale, requiring risk assessment. In the multi-factor comprehensive assessment methods for debris flow risk, it is really important to determine the weight of each factor since this affects the reliability of the assessment results. Given that the subjective weighting method can accurately reflect the importance of each factor, in order to improve the reliability of subjective weighting, the group decision making method is used to determine the weight of each factor. Group decision making is realized using the analytic hierarchy process and the data fusion algorithm. In this method, the expert combination weight is determined; on this basis, a model for comprehensive assessment of debris flow risk is established by the linear weighted sum method, and risk assessment is performed for gullies with medium to large-scale debris flows in the study area. The assessment results show that all debris flow gullies face minor to moderate risks. For gullies with high risk degree, it is suggested to timely clear material sources in channels and construct or reinforce retaining dams in order to prevent re-occurrence of debris flows.


2020 ◽  
Author(s):  
Julia Kimball ◽  
W Andrew Take

<p>Debris flows are powerful natural hazards posing risk to life, infrastructure, and property.  Understanding the particle scale interactions in these flows is a key component in the development of models to predict the mobility, distal reach, and hazard posed by a given event. In this study we focus on the process of segregation in debris flows, using a large-scale landslide flume to explore segregation in mixtures of 25 mm, 12 mm, 6 mm, and 3 mm diameter particle sizes. Sample volumes, consisting of a multicomponent mixture of materials, up to 1 m<sup>3</sup> in size are released at the top of a 6.8 m long, 2.1 m wide slope, inclined at 30 degrees to the horizontal to initiate flow. Subsequent analysis is completed to determine the extent of vertical and longitudinal segregation of the post-landslide deposit morphology. A range of experimental strategies are explored to provide quantitative measures of particle segregation. Particle size is identified via image analysis and various techniques are applied for the longitudinal sectioning of the deposit, using measurements of segregation at the sidewall of the transparent flume, contrasted with planes measured from within the centre of the deposit. Further, replicate experiments are shown to quantify the probabilistic variation in segregation for multicomponent mixtures of dry granular flows, as well as initially saturated granular flows, to explore the effect of pore fluid on segregation processes.</p>


2001 ◽  
Vol 7 (3) ◽  
pp. 221-238 ◽  
Author(s):  
Oldrich Hungr ◽  
S. G. Evans ◽  
M. J. Bovis ◽  
J. N. Hutchinson

Abstract As a result of the widespread use of the landslide classifications of Varnes (1978), and Hutchinson (1988), certain terms describing common types of flow-like mass movements have become entrenched in the language of engineering geology. Example terms include debris flow, debris avalanche and mudslide. Here, more precise definitions of the terms are proposed, which would allow the terms to be retained with their original meanings while making their application less ambiguous. A new division of landslide materials is proposed, based on genetic and morphological aspects rather than arbitrary grain-size limits. The basic material groups include sorted materials: gravel, sand, silt, and clay, unsorted materials: debris, earth and mud, peat and rock. Definitions are proposed for relatively slow non-liquefied sand or gravel flows, extremely rapid sand, silt or debris flow slides accompanied by liquefaction, clay flow slides involving extra-sensitive clays, peat flows, slow to rapid earth flows in nonsensitive plastic clays, debris flows which occur in steep established channels or gullies, mud flows considered as cohesive debris flows, debris floods involving massive sediment transport at limited discharges, debris avalanches which occur on open hill slopes and rock avalanches formed by large scale failures of bedrock.


2014 ◽  
Vol 501-504 ◽  
pp. 2463-2472 ◽  
Author(s):  
Yong Gang Ge ◽  
Qiang Zou ◽  
Jian Qiang Zhang ◽  
Xiao Jun Guo

After the Wenchuan Earthquake on May 12 2008, the highways from Dujiangyan to Wenchuan, a crucial passage from Chengdu to Sichuan Western Plateau and Gansu province, are always seriously endangered by landslides, debris flows and their following hazards. Hundreds of debris flows from watersheds, gullies and slopes on July 10 2013 produced fatal hazards and destruction on the Highway G213 and the Express Highway from Yingxiu to Wenchuan. The debris flows are characterized by numerous-occurrence, large flux (645~2238m3/s) and large magnitude (5~126×104m3) as well as the hazard chain process which is composed of debris flow, dammed lake and outburst flood. The highways were seriously destructed and blocked in 16 sites, which were induced by 6 collapsed bridges, 3 submerged bridges, 3 buried tunnel entrances, 1 site collapsed highway base and 7 sites buried highway base or bridges, and the traffic was completely interrupted. Based on analyzing the destruction modes of highways, it was found that the large-scale and potential debris flows and the irrational location of some sections, vulnerable protection measures and low resistant capability of highways against debris flows were responsible for huge highway destructions. Considering the active debris flows in the future at least 5~10 years, it was strongly suggested that potential debris flow identification, integrated management of disastrous watershed, dangerous road line altering, increasing and strengthening protection constructions at dangerous section and improving highway reconstruction standard should be carried out for highway protection and traffic security.


1987 ◽  
Vol 24 (4) ◽  
pp. 656-663 ◽  
Author(s):  
N. Eyles ◽  
John J. Clague

Sections cut through the Quaternary sediment fill of the Fraser River valley in central British Columbia provide evidence for large-scale landsliding during Pleistocene time. Especially notable are thick, laterally extensive diamict beds, consisting mainly of Tertiary rock debris, that occur near the base of glaciolacustrine sequences. These beds were deposited by subaqueous debris flows during one or more periods of lake ponding when advancing Pleistocene glaciers blocked the ancestral Fraser River. The association of diamict beds and glaciolacustrine sediments deposited during periods of glacier advance may indicate a genetic link between slope failure and lake filling. These observations (1) demonstrate the adverse effects of high pore pressures on the stability of slopes underlain by poorly indurated Tertiary rocks and (2) extend the known history of landslides involving these rocks back into the Pleistocene. Key words: landslides, debris flows, Pleistocene, glacial lake.


2013 ◽  
Vol 52 (7) ◽  
pp. 1554-1560 ◽  
Author(s):  
Andrea Toreti ◽  
Michelle Schneuwly-Bollschweiler ◽  
Markus Stoffel ◽  
Jürg Luterbacher

AbstractThis article addresses the role of large-scale circulation and thermodynamical features in the release of past debris flows in the Swiss Alps by using classification algorithms, potential instability, and convective time scale. The study is based on a uniquely dense dendrogeomorphic time series of debris flows covering the period 1872–2008, reanalysis data, instrumental time series, and gridded hourly precipitation series (1992–2006) over the area. Results highlight the crucial role of synoptic and mesoscale forcing as well as of convective equilibrium on triggering rainfalls. Two midtropospheric synoptic patterns favor anomalous southwesterly flow toward the area and high potential instability. These findings imply a certain degree of predictability of debris-flow events and can therefore be used to improve existing alert systems.


Sign in / Sign up

Export Citation Format

Share Document