scholarly journals FNDC5 relates to skeletal muscle IGF-I and mitochondrial function and gene expression in obese men with reduced growth hormone

2016 ◽  
Vol 26 ◽  
pp. 36-41 ◽  
Author(s):  
Suman Srinivasa ◽  
Caroline Suresh ◽  
Jay Mottla ◽  
Sulaiman R. Hamarneh ◽  
Javier E. Irazoqui ◽  
...  
2004 ◽  
Vol 181 (2) ◽  
pp. 281-290 ◽  
Author(s):  
J Wook Kim ◽  
RP Rhoads ◽  
SS Block ◽  
TR Overton ◽  
SJ Frank ◽  
...  

At parturition, dairy cows experience a 70% reduction in plasma IGF-I. This reduction coincides with decreased abundance of GHR1A, the liver-specific transcript of the growth hormone receptor (GHR) gene, suggesting impaired growth hormone-dependent synthesis of IGF-I. It is not immediately obvious that the periparturient reduction in GHR1A is sufficient to reduce hepatic GHR abundance. This is because approximately 50% of total GHR mRNA abundance in prepartum liver is accounted for by ubiquitously expressed transcripts which remain collectively unchanged at parturition. In addition, the possibility that parturition alters GHR expression in other growth hormone target tissue has not been examined. To address these questions, we measured GHR gene expression and GHR protein in liver and skeletal muscle of four dairy cows on days -35,+3 and+56 (relative to parturition on day 0). Hepatic GHR abundance and GHR1A transcripts were lower on day+3 than on day -35 and returned to late pregnancy value by day+56. Additional studies in two other groups of cows indicated that the hepatic levels of the GHR protein recovered substantially within 10 days after parturition. These changes occurred without variation in the abundance of HNF4, a liver-enriched transcription factor activating the promoter responsible for GHR1A synthesis. In contrast to liver, levels of GHR gene expression and GHR protein were identical on days -35,+3 and+56 in skeletal muscle. These data suggest a role for the GHR in regulating tissue-specific changes in growth hormone responsiveness in periparturient dairy cows.


2007 ◽  
Vol 293 (1) ◽  
pp. E364-E371 ◽  
Author(s):  
Klara Sjögren ◽  
Kin-Chuen Leung ◽  
Warren Kaplan ◽  
Margaret Gardiner-Garden ◽  
James Gibney ◽  
...  

Muscle is a target of growth hormone (GH) action and a major contributor to whole body metabolism. Little is known about how GH regulates metabolic processes in muscle or the extent to which muscle contributes to changes in whole body substrate metabolism during GH treatment. To identify GH-responsive genes that regulate substrate metabolism in muscle, we studied six hypopituitary men who underwent whole body metabolic measurement and skeletal muscle biopsies before and after 2 wk of GH treatment (0.5 mg/day). Transcript profiles of four subjects were analyzed using Affymetrix GeneChips. Serum insulin-like growth factor I (IGF-I) and procollagens I and III were measured by RIA. GH increased serum IGF-I and procollagens I and III, enhanced whole body lipid oxidation, reduced carbohydrate oxidation, and stimulated protein synthesis. It induced gene expression of IGF-I and collagens in muscle. GH reduced expression of several enzymes regulating lipid oxidation and energy production. It reduced calpain 3, increased ribosomal protein L38 expression, and displayed mixed effects on genes encoding myofibrillar proteins. It increased expression of circadian gene CLOCK, and reduced that of PERIOD. In summary, GH exerted concordant effects on muscle expression and blood levels of IGF-I and collagens. It induced changes in genes regulating protein metabolism in parallel with a whole body anabolic effect. The discordance between muscle gene expression profiles and metabolic responses suggests that muscle is unlikely to contribute to GH-induced stimulation of whole body energy and lipid metabolism. GH may regulate circadian function in skeletal muscle by modulating circadian gene expression with possible metabolic consequences.


2000 ◽  
Vol 278 (4) ◽  
pp. R838-R844 ◽  
Author(s):  
A. J. Lewis ◽  
T. J. Wester ◽  
D. G. Burrin ◽  
M. J. Dauncey

The extent to which the local somatotrophic axis is functional in extrahepatic tissues in the neonate is unclear. We therefore determined the expression of growth hormone (GH) receptor (GHR), and insulin-like growth factors I and II (IGF-I and IGF-II) mRNA in liver and skeletal muscle (longissimus) of neonatal pigs given daily intramuscular injections of either recombinant porcine GH (1 mg/kg body wt; n = 6) or saline ( n = 5) for 7 days. Exogenous GH increased plasma concentrations of GH 30-fold and IGF-I threefold. Abundances of specific mRNA in liver and muscle were measured by RNase protection assays (values are arbitrary density units). In liver, GH treatment increased GHR (6.0 vs. 9.7; P< 0.01) and IGF-I (5.2 vs. 49.0; P < 0.001) but not IGF-II (19.5 vs. 17.2) mRNA. In muscle, GH treatment increased IGF-I mRNA (13.3 vs. 22.8; P < 0.05) but not GHR (8.3 vs. 9.5) or IGF-II (16.1 vs. 16.9). These results demonstrate that exogenous GH can induce local somatotrophic function predominantly in liver but also in muscle of newborn pigs. Our novel finding on the selective increase in muscle IGF-I but not GHR gene expression suggests differences in posttranscriptional regulation and/or intracellular signaling mechanisms.


1995 ◽  
Vol 115 (2) ◽  
pp. 187-197 ◽  
Author(s):  
Victoria J. Wilson ◽  
Marcus Rattray ◽  
Chris R. Thomas ◽  
Barbara H. Moreland ◽  
Dennis Schulster

1991 ◽  
Vol 260 (3) ◽  
pp. E499-E504 ◽  
Author(s):  
D. A. Fryburg ◽  
R. A. Gelfand ◽  
E. J. Barrett

The short-term effects of growth hormone (GH) on skeletal muscle protein synthesis and degradation in normal humans are unknown. We studied seven postabsorptive healthy men (age 18-23 yr) who received GH (0.014 micrograms.kg-1.min-1) via intrabrachial artery infusion for 6 h. The effects of GH on forearm amino acid and glucose balances and on forearm amino acid kinetics [( 3H]Phe and [14C]Leu) were determined after 3 and 6 h of the GH infusion. Forearm deep vein GH rose to 35 +/- 6 ng/ml in response to GH, whereas systemic levels of GH, insulin, and insulin-like growth factor I (IGF-I) were unchanged. Forearm glucose uptake did not change during the study. After 6 h, GH suppressed forearm net release (3 vs. 6 h) of Phe (P less than 0.05), Leu (P less than 0.01), total branched-chain amino acids (P less than 0.025), and essential neutral amino acids (0.05 less than P less than 0.1). The effect on the net balance of Phe and Leu was due to an increase in the tissue uptake for Phe (71%, P less than 0.05) and Leu (37%, P less than 0.005) in the absence of any significant change in release of Phe or Leu from tissue. In the absence of any change in systemic GH, IGF-I, or insulin, these findings suggest that locally infused GH stimulates skeletal muscle protein synthesis. These findings have important physiological implications for both the role of daily GH pulses and the mechanisms through which GH can promote protein anabolism.


1999 ◽  
Vol 160 (1) ◽  
pp. 127-135 ◽  
Author(s):  
◽  
JL Laustsen ◽  
BS Hansen ◽  
EA Richter

The isolated effect of growth hormone on carbohydrate metabolism in rat skeletal muscle was studied in growth hormone-deficient dwarf rats (dw/dw) treated with either recombinant human growth hormone or saline for 10 days. In addition, age-matched heterozygous (DW/dw) (normal weight and plasma IGF-I) control rats were treated with saline. Growth hormone increased weight gain from 0.1+/-0.1 (s.e.m) to 3.6+/-0.1 g/day and plasma IGF-I concentration from 364+/-23 to 451+/-32 ng/ml. Glucose metabolism in skeletal muscle perfused with basal, submaximal and maximal concentrations (0, 600 and 60 000 pmol/l respectively) of insulin was not changed by growth hormone. No change could be detected in the total number of glucose transporters (GLUT1 and GLUT4) in the skeletal muscles, except from a lower amount of GLUT4 in the soleus muscle in the heterozygous control group. However, at submaximal insulin concentrations, skeletal muscle glucose uptake and transport were significantly lower in the heterozygous control group compared with the growth hormone-deficient group. This could indicate either a direct long-term effect of growth hormone or more likely a secondary effect attributable to the difference in body weight (205.2+/-3.1 vs 361. 6+/-5.9 g for dwarf rats and heterozygous controls respectively), and thereby muscle fibre size, between the groups probably resulting in lower average interstitial insulin and glucose concentrations at a given plasma concentration in the heterozygous rats. It is concluded that restoration of subnormal growth hormone concentrations for 10 days has no effect on insulin-stimulated glucose metabolism in skeletal muscle in vitro.


1990 ◽  
Vol 259 (1) ◽  
pp. E89-E95 ◽  
Author(s):  
D. L. DeVol ◽  
P. Rotwein ◽  
J. L. Sadow ◽  
J. Novakofski ◽  
P. J. Bechtel

We have investigated the hypothesis that there is local regulation of insulin-like growth factor (IGF) gene expression during skeletal muscle growth. Compensatory hypertrophy was induced in the soleus, a predominantly slow-twitch muscle, and plantaris, a fast-twitch muscle, in 11- to 12-wk-old female Wistar rats by unilateral cutting of the distal gastrocnemius tendon. Animals were killed 2, 4, or 8 days later, and muscles of the nonoperated leg served as controls. Muscle weight increased throughout the experimental period, reaching 127% (soleus) or 122% (plantaris) of control values by day 8. In both growing muscles, IGF-I mRNA, quantitated by a solution-hybridization nuclease-protection assay, rose by nearly threefold on day 2 and remained elevated throughout the experimental period. IGF-II mRNA levels also increased over controls. A more dramatic response was seen in hypophysectomized rats, where IGF-I mRNA levels rose by 8- to 13-fold, IGF-II values by 3- to 7-fold, and muscle mass increased on day 8 to 149% (soleus) or 133% (plantaris) of the control contralateral limb. These results indicate that signals propagated during muscle hypertrophy enhance the expression of both IGF genes, that modulation of IGF-I mRNA levels can occur in the absence of growth hormone, and that locally produced IGF-I and IGF-II may play a role in skeletal muscle growth.


1996 ◽  
Vol 271 (6) ◽  
pp. R1632-R1637 ◽  
Author(s):  
K. L. Kind ◽  
J. A. Owens ◽  
F. Lok ◽  
J. S. Robinson ◽  
K. J. Quinn ◽  
...  

Liver contains the highest concentrations of insulin-like growth factor (IGF) I mRNA in adult rats and sheep and is a major source of circulating IGF-I. In rats, inhibition of hepatic IGF-I production by exogenous IGF-I has been reported. In fetal sheep, skeletal muscle and liver are major sites of IGF-I synthesis and potential sources of circulating IGF-I. To determine whether feedback inhibition of IGF gene expression in fetal liver or muscle by IGF-I occurs, IGF-I and IGF-II mRNAs were measured in these tissues after intravenous infusion of recombinant human IGF-I into fetal sheep. Infusion of IGF-I (26 +/- 4 micrograms.h-1.kg-1; n = 6) or saline (n = 6) commenced on day 120 of pregnancy (term = 150 days) and continued for 10 days. Plasma concentrations of IGF-I were threefold higher in infused fetuses at 130 days of gestation (P < 0.0003), whereas those of IGF-II were unchanged. IGF-I infusion reduced the relative abundance of IGF-I mRNA (P < 0.0002) and IGF-II mRNA (P < 0.01) in fetal liver by approximately 50% but did not alter IGF-I or IGF-II mRNA in skeletal muscle. These results indicate that IGF-I inhibits the expression of both IGF-I and IGF-II genes in fetal liver and that IGF gene expression in fetal liver and muscle is differentially regulated by IGF-I.


2015 ◽  
Vol 47 (11) ◽  
pp. 559-568 ◽  
Author(s):  
Damir Alzhanov ◽  
Aditi Mukherjee ◽  
Peter Rotwein

Growth hormone (GH) plays a central role in regulating somatic growth and in controlling multiple physiological processes in humans and other vertebrates. A key agent in many GH actions is the secreted peptide, IGF-I. As established previously, GH stimulates IGF-I gene expression via the Stat5b transcription factor, leading to production of IGF-I mRNAs and proteins. However, the precise mechanisms by which GH-activated Stat5b promotes IGF-I gene transcription have not been defined. Unlike other GH-regulated genes, there are no Stat5b sites near either of the two IGF-I gene promoters. Although dispersed GH-activated Stat5b binding elements have been mapped in rodent Igf1 gene chromatin, it is unknown how these distal sites might function as potential transcriptional enhancers. Here we have addressed mechanisms of regulation of IGF-I gene transcription by GH by generating cell lines in which the rat Igf1 chromosomal locus has been incorporated into the mouse genome. Using these cells we find that physiological levels of GH rapidly and potently activate Igf1 gene transcription while stimulating physical interactions in chromatin between inducible Stat5b-binding elements and the Igf1 promoters. We have thus developed a robust experimental platform for elucidating how dispersed transcriptional enhancers control Igf1 gene expression under different biological conditions.


Sign in / Sign up

Export Citation Format

Share Document