Future climate extreme events in the Mediterranean simulated by a regional climate model: a first approach

2004 ◽  
Vol 44 (1-4) ◽  
pp. 163-180 ◽  
Author(s):  
E. Sánchez ◽  
C. Gallardo ◽  
M.A. Gaertner ◽  
A. Arribas ◽  
M. Castro
2020 ◽  
Vol 4 (3) ◽  
pp. 477-492
Author(s):  
Fatima Driouech ◽  
Khalid ElRhaz ◽  
Willfran Moufouma-Okia ◽  
Khadija Arjdal ◽  
Saloua Balhane

Abstract This study investigates future changes of temperature, precipitation, and associated extreme events in the MENA region using Regional Climate Model ALADIN-Climate over the CORDEX-MENA domain. Model capabilities to reproduce key observed regional climate features are first assessed, including heat waves, drought and high precipitation extremes. Projected changes indicate the intensification of heat waves number, duration and magnitude, and contrasted precipitation changes. A drying is projected in the north-west and moistening in the north-east along the Mediterranean side of the region. Projected regional warming is found at the rate of about 0.2 °C/decade to 0.5 °C/decade over land depending on the scenario. Drought is expected to increase in the northern half of the region independently from the index used, but with a higher rate in the case of the index accounting for both the effect of precipitation and temperature changes. ALADIN-Climate results corroborate previous studies projecting the MENA region to host global hot spots for drought in the late twenty-first century.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 622
Author(s):  
Tugba Ozturk ◽  
F. Sibel Saygili-Araci ◽  
M. Levent Kurnaz

In this study, projected changes in climate extreme indices defined by the Expert Team on Climate Change Detection and Indices were investigated over Middle East and North Africa. Changes in the daily maximum and minimum temperature- and precipitation- based extreme indices were analyzed for the end of the 21st century compared to the reference period 1971–2000 using regional climate model simulations. Regional climate model, RegCM4.4 was used to downscale two different global climate model outputs to 50 km resolution under RCP4.5 and RCP8.5 scenarios. Results generally indicate an intensification of temperature- and precipitation- based extreme indices with increasing radiative forcing. In particular, an increase in annual minimum of daily minimum temperatures is more pronounced over the northern part of Mediterranean Basin and tropics. High increase in warm nights and warm spell duration all over the region with a pronounced increase in tropics are projected for the period of 2071–2100 together with decrease or no change in cold extremes. According to the results, a decrease in total wet-day precipitation and increase in dry spells are expected for the end of the century.


2009 ◽  
Vol 22 (8) ◽  
pp. 1944-1961 ◽  
Author(s):  
Bariş Önol ◽  
Fredrick H. M. Semazzi

Abstract In this study, the potential role of global warming in modulating the future climate over the eastern Mediterranean (EM) region has been investigated. The primary vehicle of this investigation is the Abdus Salam International Centre for Theoretical Physics Regional Climate Model version 3 (ICTP-RegCM3), which was used to downscale the present and future climate scenario simulations generated by the NASA’s finite-volume GCM (fvGCM). The present-day (1961–90; RF) simulations and the future climate change projections (2071–2100; A2) are based on the Intergovernmental Panel on Climate Change (IPCC) greenhouse gas (GHG) emissions. During the Northern Hemispheric winter season, the general increase in precipitation over the northern sector of the EM region is present both in the fvGCM and RegCM3 model simulations. The regional model simulations reveal a significant increase (10%–50%) in winter precipitation over the Carpathian Mountains and along the east coast of the Black Sea, over the Kackar Mountains, and over the Caucasus Mountains. The large decrease in precipitation over the southeastern Turkey region that recharges the Euphrates and Tigris River basins could become a major source of concern for the countries downstream of this region. The model results also indicate that the autumn rains, which are primarily confined over Turkey for the current climate, will expand into Syria and Iraq in the future, which is consistent with the corresponding changes in the circulation pattern. The climate change over EM tends to manifest itself in terms of the modulation of North Atlantic Oscillation. During summer, temperature increase is as large as 7°C over the Balkan countries while changes for the rest of the region are in the range of 3°–4°C. Overall the temperature increase in summer is much greater than the corresponding changes during winter. Presentation of the climate change projections in terms of individual country averages is highly advantageous for the practical interpretation of the results. The consistence of the country averages for the RF RegCM3 projections with the corresponding averaged station data is compelling evidence of the added value of regional climate model downscaling.


2006 ◽  
Vol 10 (15) ◽  
pp. 1-17 ◽  
Author(s):  
Jason L. Bell ◽  
Lisa C. Sloan

Abstract Based upon trends in observed climate, extreme events are thought to be increasing in frequency and/or magnitude. This change in extreme events is attributed to enhancement of the hydrologic cycle caused by increased greenhouse gas concentrations. Results are presented of relatively long (50 yr) regional climate model simulations of the western United States examining the sensitivity of climate and extreme events to a doubling of preindustrial atmospheric CO2 concentrations. These results indicate a shift in the temperature distribution, resulting in fewer cold days and more hot days; the largest changes occur at high elevations. The rainfall distribution is also affected; total rain increases as a result of increases in rainfall during the spring season and at higher elevations. The risk of flooding is generally increased, as is the severity of droughts and heat waves. These results, combined with results of decreased snowpack and increased evaporation, could further stress the water supply of the western United States.


2021 ◽  
Vol 945 (1) ◽  
pp. 012022
Author(s):  
Chin Kah Seng ◽  
Tan Kok Weng ◽  
Akihiko Nakayama

Abstract Climate change is one of the challenging global issues that our world is facing and it is intensely debated on the international agenda. It is a fact that climate change has brought about many disastrous events on a global scale which affect our livelihoods. Climate models are commonly used by researchers to study the magnitude of the changing climate and to simulate future climate projections. Most climate models are developed based on various interactions among the Earth’s climate components such as the land surface, oceans, atmosphere and sea-ice. In this study, the second-generation Canadian Earth System Model (CanESM2) was statistically downscaled to develop a regional climate model (RCM) based on three representative concentration pathways (RCPs): RCP2.6, RCP4.5 and RCP8.5. The RCM will be used to simulate the average minimum and maximum temperatures and average precipitation for Ipoh, Subang and KLIA Sepang in Peninsular Malaysia for the years 2006 to 2100. The simulated data were bias corrected using the historical observation data of monthly average minimum and maximum temperatures and monthly average rainfall retrieved from the Malaysian Meteorological Department (MMD). The different trends of the simulated data for all the three locations based on the RCP2.6, RCP4.5 and RCP8.5 were evaluated for future climate projection.


2016 ◽  
Vol 51 (3) ◽  
pp. 1041-1057 ◽  
Author(s):  
Miguel Ángel Gaertner ◽  
Juan Jesús González-Alemán ◽  
Raquel Romera ◽  
Marta Domínguez ◽  
Victoria Gil ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Ji-Woo Lee ◽  
Suryun Ham ◽  
Song-You Hong ◽  
Kei Yoshimura ◽  
Minsu Joh

This study assesses future change of surface runoff due to climate change over Korea using a regional climate model (RCM), namely, the Global/Regional Integrated Model System (GRIMs), Regional Model Program (RMP). The RMP is forced by future climate scenario, namely, A1B of Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). The RMP satisfactorily reproduces the observed seasonal mean and variation of surface runoff for the current climate simulation. The distribution of monsoonal precipitation-related runoff is adequately captured by the RMP. In the future (2040–2070) simulation, it is shown that the increasing trend of temperature has significant impacts on the intra-annual runoff variation. The variability of runoff is increased in summer; moreover, the strengthened possibility of extreme occurrence is detected in the future climate. This study indicates that future climate projection, including surface runoff and its variability over Korea, can be adequately addressed on the RMP testbed. Furthermore, this study reflects that global warming affects local hydrological cycle by changing major water budget components. This study adduces that the importance of runoff should not be overlooked in regional climate studies, and more elaborate presentation of fresh-water cycle is needed to close hydrological circulation in RCMs.


2017 ◽  
Vol 50 (2) ◽  
pp. 1062
Author(s):  
K. Velikou ◽  
K. Tolika ◽  
Ch. Anagnostopoulou

A parameter that affects significantly the local, regional and global climate system is land cover and the changes that may occur to it. During winter season, heavy precipitation assists vegetation growth of Mediterranean forests and woodlands, whereas during summer, absence of precipitation and severe heat waves result to arid and semiarid vegetation. For that reason, it was quite interesting to track the changes that may occur in the climate of the Mediterranean region due to land cover/land use changes on regional climate over the Mediterranean region. The main objective of the study is the assessment of the impacts of land cover/land use changes on regional climate over the Mediterranean region. The examined regional climate model used in the study is RegCM4.4.5. Its spatial resolution is 25x25km and different simulations were performed with changes in land cover/land use for the time period 1981-1990. The different simulated data were compared in order to examine the modifications that occur from land cover/land use changes in evapotranspiration and surface albedo to direct and diffuse radiation in the domain of study.


Sign in / Sign up

Export Citation Format

Share Document