scholarly journals Novel Autoantibodies Related to Cell Death and DNA Repair Pathways in Systemic Lupus Erythematosus

2019 ◽  
Vol 17 (3) ◽  
pp. 248-259 ◽  
Author(s):  
Hui Luo ◽  
Ling Wang ◽  
Ding Bao ◽  
Li Wang ◽  
Hongjun Zhao ◽  
...  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Norzawani Buang ◽  
Lunnathaya Tapeng ◽  
Victor Gray ◽  
Alessandro Sardini ◽  
Chad Whilding ◽  
...  

AbstractThe majority of patients with systemic lupus erythematosus (SLE) have high expression of type I IFN-stimulated genes. Mitochondrial abnormalities have also been reported, but the contribution of type I IFN exposure to these changes is unknown. Here, we show downregulation of mitochondria-derived genes and mitochondria-associated metabolic pathways in IFN-High patients from transcriptomic analysis of CD4+ and CD8+ T cells. CD8+ T cells from these patients have enlarged mitochondria and lower spare respiratory capacity associated with increased cell death upon rechallenge with TCR stimulation. These mitochondrial abnormalities can be phenocopied by exposing CD8+ T cells from healthy volunteers to type I IFN and TCR stimulation. Mechanistically these ‘SLE-like’ conditions increase CD8+ T cell NAD+ consumption resulting in impaired mitochondrial respiration and reduced cell viability, both of which can be rectified by NAD+ supplementation. Our data suggest that type I IFN exposure contributes to SLE pathogenesis by promoting CD8+ T cell death via metabolic rewiring.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Danielle Perez-Bercoff ◽  
Hélène Laude ◽  
Morgane Lemaire ◽  
Oliver Hunewald ◽  
Valérie Thiers ◽  
...  

AbstractAPOBEC3 (A3) enzymes are best known for their role as antiviral restriction factors and as mutagens in cancer. Although four of them, A3A, A3B, A3F and A3G, are induced by type-1-interferon (IFN-I), their role in inflammatory conditions is unknown. We thus investigated the expression of A3, and particularly A3A and A3B because of their ability to edit cellular DNA, in Systemic Lupus Erythematosus (SLE), a chronic inflammatory disease characterized by high IFN-α serum levels. In a cohort of 57 SLE patients, A3A and A3B, but also A3C and A3G, were upregulated ~ 10 to 15-fold (> 1000-fold for A3B) compared to healthy controls, particularly in patients with flares and elevated serum IFN-α levels. Hydroxychloroquine, corticosteroids and immunosuppressive treatment did not reverse A3 levels. The A3AΔ3B polymorphism, which potentiates A3A, was detected in 14.9% of patients and in 10% of controls, and was associated with higher A3A mRNA expression. A3A and A3B mRNA levels, but not A3C or A3G, were correlated positively with dsDNA breaks and negatively with lymphopenia. Exposure of SLE PBMCs to IFN-α in culture induced massive and sustained A3A levels by 4 h and led to massive cell death. Furthermore, the rs2853669 A > G polymorphism in the telomerase reverse transcriptase (TERT) promoter, which disrupts an Ets-TCF-binding site and influences certain cancers, was highly prevalent in SLE patients, possibly contributing to lymphopenia. Taken together, these findings suggest that high baseline A3A and A3B levels may contribute to cell frailty, lymphopenia and to the generation of neoantigens in SLE patients. Targeting A3 expression could be a strategy to reverse cell death and the generation of neoantigens.


DNA Repair ◽  
2017 ◽  
Vol 56 ◽  
pp. 174-182 ◽  
Author(s):  
Rithy Meas ◽  
Matthew J. Burak ◽  
Joann B. Sweasy

Lupus ◽  
2008 ◽  
Vol 17 (11) ◽  
pp. 988-995 ◽  
Author(s):  
CL Bassi ◽  
DJ Xavier ◽  
GM Palomino ◽  
P Nicolucci ◽  
CP Soares ◽  
...  

2021 ◽  
pp. 47-57
Author(s):  
Suelen Cristina de Lima ◽  
Jaqueline de Azevêdo Silva ◽  
Nadja Maria Jorge Asano ◽  
Gisele Vagjel Fernandes ◽  
Lucila Maria Valente ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document