scholarly journals Upper Paleozoic coal measures and unconventional natural gas systems of the Ordos Basin, China

2012 ◽  
Vol 3 (6) ◽  
pp. 863-873 ◽  
Author(s):  
Xuan Tang ◽  
Jinchuan Zhang ◽  
Yansheng Shan ◽  
Jinyu Xiong
Geofluids ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-16
Author(s):  
L. Zhang ◽  
Q. Zhao ◽  
C. Wu ◽  
Z. Qiu ◽  
Q. Zhang ◽  
...  

In the Ordos Basin, multiple sets of coal seams, organic-rich shale, and limestone are well developed in the Permian Taiyuan Formation, which are favorable targets for collaborative exploration of various types of unconventional natural gas resources, including coalbed methane, shale gas, and tight gas. In this study, core samples from the Permian Taiyuan Formation in the eastern margin of the Ordos Basin were used to carry out a series of testing and analysis, such as the organic matter characteristics, the mineral composition, and the pore development characteristics. In the shale of the Taiyuan Formation, the total organic carbon (TOC) content is relatively high, with an average of 5.38%. A thin layer of black shale is developed on the top of the Taiyuan Formation, which is relatively high in TOC content, with an average of 9.72%. The limestone in the Taiyuan Formation is also relatively high in organic matter abundance, with an average of 1.36%, reaching the lower limit of effective source rocks (>1%), being good source rocks. In the shale of the Taiyuan Formation, various types of pores are well developed, with relatively high overall pore volume and pore-specific surface area, averaging 0.028 ml/g and 13.28 m2/g, respectively. The pore types are mainly mineral intergranular pores and clay mineral interlayer fractures, while organic matter-hosted pores are poorly developed. The limestone of the Taiyuan Formation is relatively tight, with lower pore volume and pore-specific surface area than those of shale, averaging 0.0106 ml/g and 2.72 m2/g, respectively. There are mainly two types of pores, namely, organic matter-hosted pores and carbonate mineral dissolution pores, with a high surface pore rate. The organic matter in the limestone belongs to the oil-generation kerogen. During thermal evolution, the organic matter has gone through the oil-generation window, generating a large number of liquid hydrocarbons, which were cracked into a large number of gaseous hydrocarbons at the higher mature stage. As a result, a large number of organic matter-hosted pores were generated. The study results show that in the Ordos Basin, the shale and limestone of the Permian Taiyuan Formation have great potential in terms of unconventional natural gas resources, providing a good geological basis for the collaborative development of coal-bearing shale gas and tight limestone gas in the Taiyuan Formation.


2016 ◽  
Vol 35 (1) ◽  
pp. 103-121 ◽  
Author(s):  
Wenxue Han ◽  
Shizhen Tao ◽  
Guoyi Hu ◽  
Weijiao Ma ◽  
Dan Liu ◽  
...  

Light hydrocarbon has abundant geochemical information, but there are few studies on it in Shenmu gas field. Taking Upper Paleozoic in Shenmu gas field as an example, authors use gas chromatography technology to study light hydrocarbon systematically. The results show that (1) The Shenmu gas field is mainly coal-derived gas, which is mixed by partial oil-derived gas due to the experiment data. (2) Based on K1, K2 parameter and Halpern star chart, the Upper Paleozoic gas in Shenmu gas field belongs to the same petroleum system and the depositional environment of natural gas source rocks should be homologous. (3) The source rocks are mainly from terrestrial higher plant origins and belong to swamp facies humic due to methyl cyclohexane index and Mango parameter intersection chart, which excluded the possibility of the Upper Paleozoic limestone as source rocks. (4) The isoheptane ranges from 1.45 to 2.69 with an average of 2.32, and n-heptane ranges from 9.48 to 17.68% with an average of 11.71%, which is below 20%. The maturity of Upper Paleozoic gas in Shenmu gas field is low-normal stage, which is consistent with Ro data. (5) The Upper Paleozoic natural gas in the Shenmu gas field did not experience prolonged migration or secondary changes, thus can be analyzed by light hydrocarbon index precisely.


2016 ◽  
Vol 20 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Jinxian He ◽  
Xiaoli Zhang ◽  
Li Ma ◽  
Hongchen Wu ◽  
Muhammad Ashraf

<p>There are enormous resources of unconventional gas in coal measures in Ordos Basin. In order to study the geological characteristics of unconventional gas in coal Measures in Ordos Basin, we analyzed and summarized the results of previous studies. Analysis results are found that, the unconventional gas in coal measures is mainly developed in Upper Paleozoic in Eastern Ordos Basin, which including coalbed methane, shale gas and tight sandstone gas. The oil and gas show active in coal, shale and tight sandstone of Upper Paleozoic in Ordos Basin. Coalbed methane reservoir and shale gas reservoir in coal measures belong to “self-generation and self- preservation”, whereas the coal measures tight sandstone gas reservoir belongs to “allogenic and self-preservation”. The forming factors of the three different kinds of gasses reservoir are closely related and uniform. We have the concluded that it will be more scientific and reasonable that the geological reservoir-forming processes of three different kinds of unconventional gas of coal measures are studied as a whole in Ordos Basin, and at a later stage, the research on joint exploration and co-mining for the three types of gasses ought to be carried out.</p>


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Jiaxuan Song ◽  
Hujun Gong ◽  
Jingli Yao ◽  
Huitao Zhao ◽  
Xiaohui Zhao ◽  
...  

The Paleozoic strata are widely distributed in the northwest of the Ordos Basin, and the provenance attributes of the basin sediments during this period are still controversial. In this paper, the detrital zircon LA-MC-ICPMS U-Pb age test was conducted on the drilling core samples of the Shanxi Formation of the Upper Paleozoic in the Otuokeqi area of the Ordos Basin, and the provenance age and the characteristic of the Shanxi formation in the Otuokeqi area in the northwest were discussed. The cathodoluminescence image shows that the detrital zircon has a clear core-edge structure, and most of the cores have clear oscillatory zonings, which suggests that they are magmatic in origin. Zircons have no oscillatory zoning structure that shows the cause of metamorphism. The age of detrital zircon is dominated by Paleoproterozoic and can be divided into four groups, which are 2500~2300 Ma, 2100~1600 Ma, 470~400 Ma, and 360~260 Ma. The first two groups are the specific manifestations of the Precambrian Fuping Movement (2.5 billion years) and the Luliang Movement (1.8 billion years) of the North China Craton. The third and fourth groups of detrital zircons mainly come from Paleozoic magmatic rocks formed by the subduction and collision of the Siberian plate and the North China plate. The ε Hf t value of zircon ranges from -18.36 to 4.33, and the age of the second-order Hf model T DM 2 ranges from 2491 to 1175 Ma. The source rock reflecting the provenance of the sediments comes from the material recycling of the Paleoproterozoic and Mesoproterozoic in the crust, combined with the Meso-Neoproterozoic detrital zircons discovered this time, indicating that the provenance area has experienced Greenwellian orogeny.


2019 ◽  
Vol 110 ◽  
pp. 162-177
Author(s):  
Jun Li ◽  
Jingzhou Zhao ◽  
Xinshan Wei ◽  
Mengna Chen ◽  
Ping Song ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document