scholarly journals Polytopic vaccination with a live-attenuated dengue vaccine enhances B-cell and T-cell activation, but not neutralizing antibodies

Heliyon ◽  
2017 ◽  
Vol 3 (3) ◽  
pp. e00271 ◽  
Author(s):  
Taweewun Hunsawong ◽  
Sineewanlaya Wichit ◽  
Thipwipha Phonpakobsin ◽  
Yongyuth Poolpanichupatam ◽  
Chonticha Klungthong ◽  
...  
Vaccines ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 284 ◽  
Author(s):  
Phoebe E. Lewis ◽  
Ethan C. Poteet ◽  
Dongliang Liu ◽  
Changyi Chen ◽  
Celia C. LaBranche ◽  
...  

Studies have shown that blockade of CTLA-4 promoted the expansion of germinal center B-cells in viral infection or immunization with model antigens. Few studies have evaluated the immunological consequences of CTLA-4 blockade during immunization against relevant vaccine candidates. Here, we investigated the effects of CTLA-4 blockade on HIV virus-like particles (VLPs) vaccination in a C57BL/6J mouse model. We found that CTLA-4 blockade during HIV VLP immunization resulted in increased CD4+ T-cell activation, promoted the expansion of HIV envelope (Env)-specific follicular helper T cell (Tfh) cells, and significantly increased HIV Gag- and Env-specific IgG with higher avidity and antibody-dependent cellular cytotoxicity (ADCC) capabilities. Furthermore, after only a single immunization, CTLA-4 blockade accelerated T-cell dependent IgG class switching and the induction of significantly high serum levels of the B-cell survival factor, A proliferation-inducing ligand (APRIL). Although no significant increase in neutralizing antibodies was observed, increased levels of class-switched Env- and Gag-specific IgG are indicative of increased polyclonal B-cell activation, which demonstrated the ability to mediate and enhance ADCC in this study. Altogether, our findings show that CTLA-4 blockade can increase the levels of HIV antigen-specific B-cell and antigen-specific Tfh cell activity and impact humoral immune responses when combined with a clinically relevant HIV VLP-based vaccine.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A744-A744
Author(s):  
Tingting Zhong ◽  
Zhaoliang Huang ◽  
Xinghua Pang ◽  
Na Chen ◽  
Xiaoping Jin ◽  
...  

BackgroundCD73 (ecto-5’-nucleotidase) is an ecto-nucleotidase that dephosphorylate AMP to form adenosine. Activation of adenosine signaling pathway in immune cells leads to the suppression of effector functions, down-regulate macrophage phagocytosis, inhibit pro-inflammatory cytokine release, as well as yield aberrantly differentiated dendritic cells producing pro-tumorigenic molecules.1 In the tumor microenvironment, adenosinergic negative feedback signaling facilitated immune suppression is considered an important mechanism for immune evasion of cancer cells.2 3 Combination of CD73 and anti-PD-1 antibody has shown promising activity in suppressing tumor growth. Hence, we developed AK119, an anti- human CD73 monoclonal antibody, and AK123,a bi-specific antibody targeting both PD-1 and CD73 for immune therapy of cancer.MethodsAK119 is a humanized antibody against CD73 and AK123 is a tetrameric bi-specific antibody targeting PD-1 and CD73. Binding assays of AK119 and AK123 to antigens, and antigen expressing cells were performed by using ELISA, Fortebio, and FACS assays. In-vitro assays to investigate the activity of AK119 and AK123 to inhibit CD73 enzymatic activity in modified CellTiter-Glo assay, to induce endocytosis of CD73, and to activate B cells were performed. Assay to evaluate AK123 activity on T cell activation were additionally performed. Moreover, the activities of AK119 and AK123 to mediate ADCC, CDC in CD73 expressing cells were also evaluated.ResultsAK119 and AK123 could bind to its respective soluble or membrane antigens expressing on PBMCs, MDA-MB-231, and U87-MG cells with high affinity. Results from cell-based assays indicated that AK119 and AK123 effectively inhibited nucleotidase enzyme activity of CD73, mediated endocytosis of CD73, and induced B cell activation by upregulating CD69 and CD83 expression on B cells, and showed more robust CD73 blocking and B cell activation activities compared to leading clinical candidate targeting CD73. AK123 could also block PD-1/PD-L1 interaction and enhance T cell activation.ConclusionsIn summary, AK119 and AK123 represent good preclinical biological properties, which support its further development as an anti-cancer immunotherapy or treating other diseases.ReferencesDeaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, Chen JF, Enjyoji K, Linden J, Oukka M, et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 2007; 204:1257–65.Huang S, Apasov S, Koshiba M, Sitkovsky M. Role of A2a extracellular adenosine receptor-mediated signaling in adenosine-mediated inhibition of T-cell activation and expansion. Blood. 1997; 90:1600–10.Novitskiy SV, Ryzhov S, Zaynagetdinov R, Goldstein AE, Huang Y, Tikhomirov OY, Blackburn MR, Biaggioni I,Carbone DP, Feoktistov I, et al. Adenosine receptors in regulation of dendritic cell differentiation and function. Blood 2008; 112:1822–31.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A119-A119
Author(s):  
Lu Bai ◽  
Kevin Nishimoto ◽  
Mustafa Turkoz ◽  
Marissa Herrman ◽  
Jason Romero ◽  
...  

BackgroundAutologous chimeric antigen receptor (CAR) T cells have been shown to be efficacious for the treatment of B cell malignancies; however, widespread adoption and application of CAR T cell products still face a number of challenges. To overcome these challenges, Adicet Bio is developing an allogeneic γδ T cell-based CAR T cell platform, which capitalizes on the intrinsic abilities of Vδ1 γδ T cells to recognize and kill transformed cells in an MHC-unrestricted manner, to migrate to epithelial tissues, and to function in hypoxic conditions. To gain a better understanding of the requirements for optimal intratumoral CAR Vδ1 γδ T cell activation, proliferation, and differentiation, we developed a three-dimensional (3D) tumor spheroid assay, in which tumor cells acquire the structural organization of a solid tumor and establish a microenvironment that has oxygen and nutrient gradients. Moreover, through the addition of cytokines and/or tumor stromal cell types, the spheroid microenvironment can be modified to reflect hot or cold tumors. Here, we report on the use of a 3D CD20+ Raji lymphoma spheroid assay to evaluate the effects of IL-2 and IL-15, positive regulators of T cell homeostasis and differentiation, on the proliferative and antitumor capacities of CD20 CAR Vδ1 γδ T cells.MethodsMolecular, phenotypic, and functional profiling were performed to characterize the in vitro dynamics of the intraspheroid CD20 CAR Vδ1 γδ T cell response to target antigen in the presence of IL-2, IL-15, or no added cytokine.ResultsWhen compared to no added cytokine, the addition of IL-2 or IL-15 enhanced CD20 CAR Vδ1 γδ T cell activation, proliferation, survival, and cytokine production in a dose-dependent manner but were only able to alter the kinetics of Raji cell killing at low effector to target ratios. Notably, differential gene expression analysis using NanoString nCounter® Technology confirmed the positive effects of IL-2 or IL-15 on CAR-activated Vδ1 γδ T cells as evidenced by the upregulation of genes involved in activation, cell cycle, mitochondrial biogenesis, cytotoxicity, and cytokine production.ConclusionsTogether, these results not only show that the addition of IL-2 or IL-15 can potentiate CD20 CAR Vδ1 γδ T cell activation, proliferation, survival, and differentiation into antitumor effectors but also highlight the utility of the 3D spheroid assay as a high throughput in vitro method for assessing and predicting CAR Vδ1 γδ T cell activation, proliferation, survival, and differentiation in hot and cold tumors.


2005 ◽  
Vol 55 (5) ◽  
pp. 503-514 ◽  
Author(s):  
Bernd Schlereth ◽  
Cornelia Quadt ◽  
Torsten Dreier ◽  
Peter Kufer ◽  
Grit Lorenczewski ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Jue Hou ◽  
Shuhui Wang ◽  
Dan Li ◽  
Lindsay N. Carpp ◽  
Tong Zhang ◽  
...  

Both vaccine “take” and neutralizing antibody (nAb) titer are historical correlates for vaccine-induced protection from smallpox. We analyzed a subset of samples from a phase 2a trial of three DNA/HIV-1 primes and a recombinant Tiantan vaccinia virus-vectored (rTV)/HIV-1 booster and found that a proportion of participants showed no anti-vaccinia nAb response to the rTV/HIV-1 booster, despite successful vaccine “take.” Using a rich transcriptomic and vaccinia-specific immunological dataset with fine kinetic sampling, we investigated the molecular mechanisms underlying nAb response. Blood transcription module analysis revealed the downregulation of the activator protein 1 (AP-1) pathway in responders, but not in non-responders, and the upregulation of T-cell activation in responders. Furthermore, transcriptional factor network reconstruction revealed the upregulation of AP-1 core genes at hour 4 and day 1 post-rTV/HIV-1 vaccination, followed by a downregulation from day 3 until day 28 in responders. In contrast, AP-1 core and pro-inflammatory genes were upregulated on day 7 in non-responders. We speculate that persistent pro-inflammatory signaling early post-rTV/HIV-1 vaccination inhibits the nAb response.


Author(s):  
Serge Grazioli ◽  
Fedora Tavaglione ◽  
Giulia Torriani ◽  
Noemie Wagner ◽  
Marie Rohr ◽  
...  

Abstract Background Recently, cases of multisystem inflammatory syndrome in children (MIS-C) associated with COVID-19 have been reported worldwide. Negative RT-PCR testing associated with positive serology in most cases suggests a post-infectious syndrome. Because the pathophysiology of this syndrome is still poorly understood, extensive virological and immunological investigations are needed. Methods We report a series of four pediatric patients admitted to Geneva University Hospitals with persistent fever and laboratory evidence of inflammation meeting published definition of MIS-C related to COVID-19, to whom an extensive virological and immunological workup was performed. Results RT-PCRs on multiple anatomical compartments were negative whereas anti-SARS-CoV-2 IgA and IgG were strongly positive by ELISA and immunofluorescence. Both pseudo- and full virus neutralization assays showed the presence of neutralizing antibodies in all children, confirming a recent infection with SARS-CoV-2. Analyses of cytokine profiles revealed an elevation in all cytokines, as reported in adults with severe COVID-19. Although differing in clinical presentation, some features of MIS-C show phenotypic overlap with haemophagocytic lymphohistiocytosis (HLH). In contrast to patients with primary HLH, our patients showed normal perforin expression and NK cell degranulation. The levels of soluble IL-2 receptor (sIL-2R) correlated with the severity of disease, reflecting recent T-cell activation. Conclusion Our findings suggest that MIS-C related to COVID-19 is caused by a post-infectious inflammatory syndrome associated with elevation in all cytokines, and markers of recent T-cell activation (sIL-2R) occurring despite a strong and specific humoral response to SARS-CoV2. Further functional and genetic analyses are essential to better understand the mechanisms of host-pathogen interactions.


Sign in / Sign up

Export Citation Format

Share Document