scholarly journals Verification of Gardner's equation and derivation of an empirical equation for anhydrite rocks in Sirte basin, Libya: case study

Heliyon ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. e06017
Author(s):  
Bahia M. Ben Ghawar ◽  
Moncef Zairi ◽  
Samir Bouaziz
2020 ◽  
Vol 17 (1) ◽  
pp. 87-95
Author(s):  
Indra Agus ◽  
Munafri Alwys ◽  
Wisafri Wisafri ◽  
Dalrino Dalrino ◽  
Noftar Yolanda ◽  
...  

Toe Scour around abutment will be very dangerous and cause loss of stability on the bridge. The case of structure failure on Batang Kalu bridge in Korong Pasa Usang Nagari Kayu Tanam, Padang Pariaman Regency on Monday (10 December 2018) is a clear example of toe scouring. A case study of toe scour was on the Batang Kalu River bridge structure has been carried out. Rainfall data closest to the study location, Kandang Empat Station was used to minimize the errors in the calculation of flood discharge design. Numerical modeling with HEC RAS and scouring estimation with some empiric equation was conducted to predicting scour depth on abutment. Simulation results show scour depth results to an average of 2.731 m and close to the scour depth that occurred in the field (2.83 m). Results showed that the local scouring in the Batang Kalu River bridge structure can be suspected as the influence of the increasing river steepness. Discharge that is triggered by heavy rain with a long duration and increased river flow velocity due to steepness has the potential to create a very intense scouring. Increasing of steepness may have been caused by sand mining activities in the upper reaches. Further studies are needed to see the potential slope changes due to exploitation in the Batang Kalu River upper reaches


2016 ◽  
Vol 4 (1) ◽  
pp. SB1-SB11 ◽  
Author(s):  
Yichuan Wang ◽  
Christoph Georg Eichkitz ◽  
Marcellus Gregor Schreilechner ◽  
Gabor Heinemann ◽  
John C. Davis ◽  
...  

A 3D seismic survey over the Intisar E field in the Ajdabiya Trough of the Sirte Basin, Libya, revealed a channel-like feature in Eocene carbonates that wraps around the pinnacle reef that contains the reservoir. We have used coherence, curvature, and spectral decomposition seismic attributes to determine the morphology and gray-level co-occurrence matrix attributes to define seismic facies within the feature. These indicated that the channel originated by submarine scouring caused by downslope movement of turbidity currents. Erosion was followed by the deposition of successive layers of carbonate debris in the channel. Stratigraphic correlations with the adjacent pinnacle reef revealed that the channel was cut during the late stage of reef growth, and a second channel formed after the Intisar E reef ceased to grow. Differences in seafloor elevation over the reef probably diverted turbidity currents so channels were not cut into the reef, breaching the reservoir. This interpreted geologic history may explain why some pinnacle reefs in the Intisar complex contained giant reservoirs, whereas others were barren.


2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Quang Hieu TRAN

Blasting is one of the most effective methods for fragmenting rock in quarries. Nevertheless, itsadverse effects are significant, especially blast-induced ground vibration. Field measurement andempirical equations are simple methods to determine and estimate the intensity of blast-induced groundvibration. However, we cannot evaluate the effects of blast-induced ground vibration on the surroundingenvironment based on these outcomes. Therefore, this study explores the relation between seismiccoefficient and rock properties through field measurements and an empirical model for evaluating theeffect of blast-induced ground vibration in open-pit mines. Accordingly, the seismic coefficient (K) isconsidered the main objective in this study. Firstly, it was determined based on the rock properties.Subsequently, an empirical model for estimating blast-induced ground vibration was developed based onfield measurements. This empirical equation was then expanded to determine K to check whether itmatches the determined K by the rock properties. Finally, it was used as the threshold to determine themaximum explosive charged per delay to ensure the safety of the surrounding environment from blastinducedground vibration. For this aim, the Thuong Tan III quarry (in Binh Duong province, Vietnam)was selected as a case study. Fifth-teen blasting events with a total of 75 blast-induced ground vibrationvalues were recorded and collected. An empirical equation for estimating blast-induced ground vibrationwas then developed based on the collected dataset, and K was determined in the range of 539 to 713 forthe Thuong Tan III quarry. Based on the measured blast-induced ground vibrations, developed empiricalmodel, and K values, the Phase 2 software was applied to simulate the effects of blast-induced groundvibration on the stability of slopes as one of the impacts on the surrounding environment. From thesimulation results, we can determine the maximum explosive charged per delay for each type of rock toensure the stability of the slope.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1572 ◽  
Author(s):  
Hany F. Abd-Elhamid ◽  
Martina Zeleňáková ◽  
Zuzana Vranayová ◽  
Ismail Fathy

Urban growth is one of the major causes of flooding in urban areas. This affects the runoff coefficients, which is among the most important factors that affect the design of storm water drainage systems. Changing the runoff coefficient will affect the design parameters of the drainage network, including outfall discharge, velocity, lag time and cost of construction. This study aims to assess the effect of changing the runoff coefficient due to urban growth on the design of a storm water drainage system. The hydrological models Hyfran, StormCAD and GIS are used to analyze different runoff coefficients. This study examines three zones in Dammam in the Kingdom of Saudi Arabia (KSA). The data developed from the models for the current case studies are used to develop an empirical equation to predict the max discharge for other catchments. The discharge is a function of the return period, runoff coefficient, drainage density, longest path, rainfall intensity and catchment area. To validate the developed equation, we use it to estimate the discharge in a real case study in South Korea. A comparison between the measured discharge and estimated discharge shows that the empirical equation is capable of predicting the maximum discharge for different catchments with high accuracy. Then, the validation of the models is carried out to determine the effect of the runoff coefficient on the design of a storm water drainage system in a case study in KSA. The results show that an increasing runoff coefficient due to urban growth increases the outfall discharge and velocity of storm water drainage systems, as well as affecting the cost of construction and decreasing the lag time. The cost increases by two to three times with increasing urbanization. This study provides a new perspective on the hydrologic impact of urban growth on the design of storm water drainage systems, which are essential for flood management. Moreover, the relationship between urban growth and the cost of storm drainage networks is explored, which could help decision makers to make appropriate judgements.


2016 ◽  
Author(s):  
Jon D. Pelletier

Abstract. Discerning how tectonic uplift rates, climate, soil production rates, erosion rates, and topography interact is essential for understanding the geomorphic evolution of mountain ranges. Perhaps the key independent variable in this interaction is the potential soil production rate, i.e., the upper limit at which bedrock can be converted into transportable material. In this paper I document the controls on potential soil production rates using the San Gabriel Mountains (SGM) of California as a case study. The prevailing conceptual model for the geomorphic evolution of the SGM is that tectonic uplift rates control topographic steepness, erosion rates, and potential soil production rates. I test the alternative hypothesis that bedrock damage and microclimate also exert first-order controls on landscape evolution in the SGM via their influence on potential soil production rates. I develop an empirical equation that relates potential soil production rates in the SGM to a bedrock damage index that depends on the local density of faults and a microclimatic index that relates to aspect-driven variations in vegetation cover and wildfire severity and frequency. Assuming a balance between soil production and erosion rates at the hillslope scale, I further show that observed trends in topographic steepness can be reproduced using the empirical equation for potential soil production rates. The results suggest that tectonic uplift rates, bedrock damage, and microclimate play co-equal and interacting roles in controlling landscape evolution in the SGM and perhaps other tectonically active mountain ranges.


Sign in / Sign up

Export Citation Format

Share Document