scholarly journals Exploring the Relation between Seismic Coefficient and Rock Properties Through Field Measurements and Empirical Model for Evaluating the Effect of Blast-Induced Ground Vibration in Open- Pit Mines: A Case Study at the Thuong Tan III Quarry (Vietnam)

2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Quang Hieu TRAN

Blasting is one of the most effective methods for fragmenting rock in quarries. Nevertheless, itsadverse effects are significant, especially blast-induced ground vibration. Field measurement andempirical equations are simple methods to determine and estimate the intensity of blast-induced groundvibration. However, we cannot evaluate the effects of blast-induced ground vibration on the surroundingenvironment based on these outcomes. Therefore, this study explores the relation between seismiccoefficient and rock properties through field measurements and an empirical model for evaluating theeffect of blast-induced ground vibration in open-pit mines. Accordingly, the seismic coefficient (K) isconsidered the main objective in this study. Firstly, it was determined based on the rock properties.Subsequently, an empirical model for estimating blast-induced ground vibration was developed based onfield measurements. This empirical equation was then expanded to determine K to check whether itmatches the determined K by the rock properties. Finally, it was used as the threshold to determine themaximum explosive charged per delay to ensure the safety of the surrounding environment from blastinducedground vibration. For this aim, the Thuong Tan III quarry (in Binh Duong province, Vietnam)was selected as a case study. Fifth-teen blasting events with a total of 75 blast-induced ground vibrationvalues were recorded and collected. An empirical equation for estimating blast-induced ground vibrationwas then developed based on the collected dataset, and K was determined in the range of 539 to 713 forthe Thuong Tan III quarry. Based on the measured blast-induced ground vibrations, developed empiricalmodel, and K values, the Phase 2 software was applied to simulate the effects of blast-induced groundvibration on the stability of slopes as one of the impacts on the surrounding environment. From thesimulation results, we can determine the maximum explosive charged per delay for each type of rock toensure the stability of the slope.

2020 ◽  
Vol 61 (6) ◽  
pp. 22-29
Author(s):  
Hoang Nguyen . ◽  

Blasting is considered as one of the most effective methods for rock fragmentation in open - pit mines. However, its side effects are significant, especially blast - induced ground vibration. Therefore, this study aims to develop and apply artificial intelligence in predicting blast - induced ground vibration in open - pit mines. Indeed, the k - nearest neighbors (KNN) algorithm was taken into account and developed for predicting blast - induced ground vibration at the Deo Nai open - pit coal mine (Vietnam) as a case study. An empirical model (i.e., USBM) was also developed to compare with the developed KNN model aiming to highlight the advantage of the KNN model. Accordingly, 194 blasting events were collected and analyzed for this aim. This database was then divided into two parts, 80% for training and 20% for testing. The MinMax scale and 10 - fold cross - validation techniques were applied to improve the accuracy, as well as avoid overfitting of the KNN model. Root - mean - squared error (RMSE) and determination coefficient (R2) were used as the performance metrics for models’ evaluation and comparison purposes. The results indicated that the KNN model yielded better superior performance than those of the USBM empirical model with an RMSE of 1.157 and R2 of 0.967. In contrast, the USBM model only provided a weak performance with an RMSE of 4.205 and R2 of 0.416. With the obtained results, the KNN can be introduced as a potential artificial intelligence model for predicting and controlling blast - induced ground vibration in practical engineering, especially at the Deo Nai open - pit coal mine.


2009 ◽  
Vol 61 (4) ◽  
pp. 741-755 ◽  
Author(s):  
Fehmi Arikan ◽  
Fatih Yoleri ◽  
Sureyya Sezer ◽  
Dincer Caglan ◽  
Bengu Biliyul

2020 ◽  
Vol 61 (5) ◽  
pp. 107-116
Author(s):  
Hoang Nguyen . ◽  
Nam Xuan Bui . ◽  
Hieu Quang Tran . ◽  
Giang Huong Thi Le ◽  

The efforts of this study are to develop and propose a state - of - the - art model for predicting blast - induced ground vibration in open - pit mines with high accuracy anf ability based on the gene expression programming (GEP) technique. 25 blasts were conducted in the Tan Dong Hiep quarry mines with a total of 83 blasting events that were collected for this study. The GEP method was then applied to develop a non - linear equation for predicting blast - induced ground vibration based on a variety of influential parameters. A traditional empirical equation, namely Sadovski, was also applied to compare with the proposed GEP model. The results indicated that the GEP model can predict blast - induced ground vibration in open - pit mines better than the Sadovski model with an RMSE of 0.986 and R2 of 0.867. Meanwhile, the traditional empirical model (Sadovski) only provided an accuracy with an RMSE of 1.850 và R2 of 0.767.


2013 ◽  
Vol 671-674 ◽  
pp. 245-250
Author(s):  
Wen Hui Tan ◽  
Ya Liang Li ◽  
Cong Cong Li

At present, in-situ stress was not considered in Limit Equilibrium Method (LEM) of slopes, the influence of in-situ stress is very small on the stability of conventional slopes, but in deep-depressed open-pit mines, the influence should not be neglected. Formula for calculating the Factor of Safety (FOS) under the effect of horizontal in-situ stress was deduced using General Slice Method (GSM) of two-dimensional (2D) limit equilibrium method in this paper,a corresponding program SSLOPE was built, and the software was used in a deep- depressed open-pit iron mine. The results show that the FOS of the slope decreased by 20% when horizontal in-situ stress is considered, some reinforcements must be taken. Therefore, the influence of in-situ stress on slope stability should be taken into account in deep open –pit mines.


2011 ◽  
Vol 48 (11) ◽  
pp. 1601-1615 ◽  
Author(s):  
Martin Grenon ◽  
Amélie-Julie Laflamme

Using a case study, this paper presents an integrated methodology for assessing structural slope stability at the inter-ramp and bench levels. Robust algorithms have been developed and implemented to compute, at inter-ramp and bench levels, slope orientations and slope stability using input data compatible with a commercially available mine-design software tool database structure. Multi-criteria stability analyses were performed based on various design criteria. Susceptibility maps were produced enabling the identification of zones of concern in the designed pit. The obtained results suggest that inter-ramp angles do not present instability concerns over the entire pit surface. At bench levels, potential instability zones were identified within two structural domains totalling 6% of the total pit surface.


2021 ◽  
Author(s):  
Zihan Zhou ◽  
Yanjun Shen ◽  
Zhonghui Chen

Abstract Rock slopes with intermittent joints in open-pit mines are complex geological bodies composed of intact rock and discontinuous structural planes, and their stability analysis are necessary for mine disaster prevention. In this study, a series of base friction tests were performed to determine the failure process and displacement field evolution of rock slopes with intermittent joints using the speckle technique of a noncontact measurement system. Next, stability calculation models of the slopes were established from the energy perspective using the plastic limit analysis theory, and the effects of the joint inclination angle and coalescence coefficient of rock bridges on the slope stability were evaluated. The four main conclusions are as follows. (1) The failure of rock slopes with intermittent joints shows the feature of collapse-lower traction-upper push. (2) Based on the failure modes of rock bridges in slopes, the failure of rock slopes with intermittent joints could be divided into three types: tensile coalescence (Type A), shear coalescence (Type B), and tensile–shear coalescence (Type C). (3) Among the three slope types, the stability of the Type A slope is significantly influenced by rock cohesion, whereas that the Type B slope is significantly influenced by joint cohesion. The stability of the Type C slope is significantly influenced by the joint inclination angle and joint friction angle. (4) The local-stable slope is unstable while the first through-tensile crack in the zone of the potential sliding body higher than the critical instability height appeared. This study guides the stability evaluation and instability prediction of jointed rock slopes in open-pit mines.


Sign in / Sign up

Export Citation Format

Share Document