scholarly journals Evaluating the spatial and temporal variations of aquatic weeds (Biomass) on Lower Volta River using multi-sensor Landsat Images and machine learning

Heliyon ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. e07080
Author(s):  
Clement Nyamekye ◽  
Samuel Anim Ofosu ◽  
Richard Arthur ◽  
Gabriel Osei ◽  
Linda Boamah Appiah ◽  
...  
2017 ◽  
Vol 63 (241) ◽  
pp. 899-911 ◽  
Author(s):  
XIAOYING YUE ◽  
JUN ZHAO ◽  
ZHONGQIN LI ◽  
MINGJUN ZHANG ◽  
JIN FAN ◽  
...  

ABSTRACTGlacier albedo controls the surface energy budget, the variability of which affects the glacier surface melt rate and, in turn, impacts the mass balance of the glacier. During 2013 and 2014, spatial and temporal variations of albedo were investigated using 18 Landsat images of Urumqi Glacier No. 1. Factors influencing these spatiotemporal profiles were analyzed. An established retrieval process, including geolocation, radiometric calibration, atmospheric, topographic, and anisotropic correction and narrow- to broadband conversion, was applied for the first time to Landsat-8 images. Differences between Landsat image derived albedo values and albedo values measured using a handheld spectroradiometer ranged from −0.024 to 0.049. Spatial and temporal variations of surface albedo were significant, especially in the ablation area. The variability of the values of ice albedo ranged from 0.06 to 0.44 due to topographic effects and light-absorbing impurities. The results suggest that this retrieval method can be used to investigate the spatial and temporal variability of surface albedo from Landsat-8 images on mountain glaciers. Moreover, as constant albedo values for ice and snow cannot be assumed, the distribution of albedo was not completely dependent on altitude under conditions of more intense ablation, and by reason of light-absorbing impurities during the melt season.


2019 ◽  
Vol 11 (3) ◽  
pp. 284 ◽  
Author(s):  
Linglin Zeng ◽  
Shun Hu ◽  
Daxiang Xiang ◽  
Xiang Zhang ◽  
Deren Li ◽  
...  

Soil moisture mapping at a regional scale is commonplace since these data are required in many applications, such as hydrological and agricultural analyses. The use of remotely sensed data for the estimation of deep soil moisture at a regional scale has received far less emphasis. The objective of this study was to map the 500-m, 8-day average and daily soil moisture at different soil depths in Oklahoma from remotely sensed and ground-measured data using the random forest (RF) method, which is one of the machine-learning approaches. In order to investigate the estimation accuracy of the RF method at both a spatial and a temporal scale, two independent soil moisture estimation experiments were conducted using data from 2010 to 2014: a year-to-year experiment (with a root mean square error (RMSE) ranging from 0.038 to 0.050 m3/m3) and a station-to-station experiment (with an RMSE ranging from 0.044 to 0.057 m3/m3). Then, the data requirements, importance factors, and spatial and temporal variations in estimation accuracy were discussed based on the results using the training data selected by iterated random sampling. The highly accurate estimations of both the surface and the deep soil moisture for the study area reveal the potential of RF methods when mapping soil moisture at a regional scale, especially when considering the high heterogeneity of land-cover types and topography in the study area.


2021 ◽  
Vol 3 (7) ◽  
Author(s):  
Alex Saturday ◽  
Thomas J. Lyimo ◽  
John Machiwa ◽  
Siajali Pamba

AbstractBackground Microbial water quality serves to indicate health risks associated with the consumption of contaminated water. Nevertheless, little is known about the microbiological characteristics of water in Lake Bunyonyi. This study was therefore undertaken to examine the spatial and temporal variations of faecal indicator bacteria (FIB) in relation to physicochemical parameters in Lake Bunyonyi. Result The FIB concentration was consistently measured during sampling months and correlated with each other showing the presumed human faecal pollution in the lake. The highest concentration values for E. coli (64.7 ± 47.3 CFU/100 mL) and enterococci (24.6 ± 32.4 CFU/100 mL were obtained in the station close to the Mugyera trading centre. On a temporal basis, the maximum values were recorded during the rainy season in October 2019 (70.7 ± 56.5 CFU/100 mL for E. coli and 38.44 ± 31.8 CFU/100 mL for enterococci. FIB did not differ significantly among the study stations (p > 0.05) but showed significant temporal variations among the months (p < 0.05) with concentrations being significantly high in wet season than dry season (U = 794, p < 0.0001 for E. coli; U = 993.5, p = 0.008 for enterococci). Spearman’s rank correlation revealed that FIB concentrations were significantly positively correlated with turbidity and DO concentration levels (p < 0.05). Approximately 97.2% of the water samples had E. coli and enterococci concentrations levels below USEPA threshold for recreational waters. Likewise, 98.1 and 90.7% of samples recorded E. coli and enterococci counts exceeding the UNBS, APHA, WHO and EU threshold values for drinking water. Conclusion The FIB counts show that the Lake Bunyonyi water is bacteriologically unsuitable for drinking unless it is treated since the FIB pose health risks to consumers. Besides, the water can be used for recreational purposes.


2003 ◽  
Vol 28 (1) ◽  
pp. 129-150 ◽  
Author(s):  
J.F. Lynch ◽  
A.E. Newhall ◽  
B. Sperry ◽  
G. Gawarkiewicz ◽  
A. Fredricks ◽  
...  

BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
J. M. García-Torrecillas ◽  
M. C. Olvera-Porcel ◽  
M. Ferrer-Márquez ◽  
F. Rubio-Gil ◽  
M J. Sánchez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document