scholarly journals Phosphorus application improves grain yield in low phytic acid maize synthetic populations

Heliyon ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. e07912
Author(s):  
Mohammed A.E. Bakhite ◽  
Nkanyiso J. Sithole ◽  
Lembe S. Magwaza ◽  
Alfred O. Odindo ◽  
Shirly T. Magwaza ◽  
...  
2008 ◽  
Vol 108 (3) ◽  
pp. 206-211 ◽  
Author(s):  
Hai-Jun Zhao ◽  
Qing-Long Liu ◽  
Hao-Wei Fu ◽  
Xiu-Hong Xu ◽  
Dian-Xing Wu ◽  
...  

2005 ◽  
Vol 52 (4) ◽  
pp. 369-379
Author(s):  
B. G. Shivakumar ◽  
B. N. Mishra ◽  
R. C. Gautam

A field experiment on a greengram-wheat cropping sequence was carried out under limited water supply conditions in 1997-98 and 1998-99 at the farm of the Indian Agricultural Research Institute, New Delhi. The greengram was sown either on flat beds or on broad beds 2 m in width, divided by furrows, with 0, 30 and 60 kg P2O5/ha. After the harvest of greengram pods, wheat was grown in the same plots, either with the greengram stover removed or with the stover incorporated along with 0, 40, 80 and 120 kg N/ha applied to wheat. The grain yield of greengram was higher when sown on broad beds with furrows compared to flat bed sowing, and the application of 30 or 60 kg P2O5/ha resulted in significantly higher grain yields compared to no phosphorus application. The combination of broad bed and furrows with phosphorus fertilization was found to be ideal for achieving higher productivity in greengram. The land configuration treatments had no impact on the productivity of wheat. The application of phosphorus to the preceding crop had a significant residual effect on the grain yield of wheat. The incorporation of greengram stover also significantly increased the grain yield of wheat. The increasing levels of N increased the grain yield of wheat significantly up to 80 kg/ha. The combination of greengram stover incorporation and 80 kg N/ha applied to wheat significantly increased the grain yield. Further, there was a significant interaction effect between the phosphorus applied to the preceding crop and N levels given to wheat on the grain yield of wheat.


Crop Science ◽  
2004 ◽  
Vol 44 (1) ◽  
pp. 363 ◽  
Author(s):  
J.N. Rutger ◽  
V. Raboy ◽  
K.A.K. Moldenhauer ◽  
R.J. Bryant ◽  
F.N. Lee ◽  
...  
Keyword(s):  

Crop Science ◽  
2006 ◽  
Vol 46 (6) ◽  
pp. 2403-2408 ◽  
Author(s):  
M. J. Guttieri ◽  
K. M. Peterson ◽  
E. J. Souza

1987 ◽  
Vol 52 (6) ◽  
pp. 1600-1603 ◽  
Author(s):  
S. M. DAGHER ◽  
S. SHADAREVIAN ◽  
W. BIRBARI

Author(s):  
Mohammed A Elgorashi Bakhite ◽  
Nkanyiso J Sithole ◽  
Lembe S Magwaza ◽  
Alfred O Odindo ◽  
John Derera

2019 ◽  
Vol 11 (17) ◽  
pp. 4799
Author(s):  
Wenting Jiang ◽  
Xiaohu Liu ◽  
Xiukang Wang ◽  
Lihui Yang ◽  
Yuan Yin

Optimizing the phosphorus (P) application rate can increase grain yield while reducing both cost and environmental impact. However, optimal P rates vary substantially when different targets such as maximum yield or maximum economic benefit are considered. The present study used field experiment conducted at 36 experiments sites for maize to determine the impact of P application levels on grain yield, plant P uptake, and P agronomy efficiency (AEP), P-derived yield benefits and private profitability, and to evaluated the agronomically (AOPR), privately (POPR), and economically (EOPR) optimal P rate at a regional scale. Four treatments were compared: No P fertilizer (P0); P rate of 45–60 kg ha−1 (LP); P rate of 90–120 kg ha−1 (MP); P rate of 135–180 kg ha−1 (HP). P application more effectively increased grain yield, reaching a peak at MP treatment. The plant P uptake in HP treatment was 37.4% higher than that in P0. The relationship between P uptake by plants (y) and P application rate (x) can be described by the equation y = −0.0003x2 + 0.1266x + 31.1 (R2 = 0.309, p < 0.01). Furthermore, grain yield (y) and plant P uptake (x) across all treatments also showed a significant polynomial function (R2 = 0.787–0.846). The MP treatment led to highest improvements in P agronomic efficiency (AEP), P-derived yield benefits (BY) and private profitability (BP) compared with those in other treatments. In addition, the average agronomically (AOPR), privately (POPR), and economically optimal P rate (EOPR) in 36 experimental sites were suggested as 127.9 kg ha−1, 110.8 kg ha−1, and 114.4 kg ha−1, which ranged from 80.6 to 211.3 kg ha−1, 78.2 to 181.8 kg ha−1, and 82.6 to 151.6 kg ha−1, respectively. Economically optimal P application (EOPR) can be recommended, because EOPR significantly reduced P application compared with AOPR, and average economically optimal yield was slightly higher compared with the average yield in the MP treatment. This study was conducive in providing a more productive, use-effective, profitable, environment-friendly P fertilizer management strategy for supporting maximized production potential and environment sustainable development.


Sign in / Sign up

Export Citation Format

Share Document