Hepatic gene expression in hepatocyte-specific Pten deficient mice showing steatohepatitis without ethanol challenge

2006 ◽  
Vol 34 (4) ◽  
pp. 256-265 ◽  
Author(s):  
W SATO ◽  
Y HORIE ◽  
E KATAOKA ◽  
S OHSHIMA ◽  
T DOHMEN ◽  
...  
2007 ◽  
Vol 97 (4) ◽  
pp. 628-638 ◽  
Author(s):  
Sergio Acín ◽  
María A. Navarro ◽  
Javier S. Perona ◽  
Joaquín C. Surra ◽  
Natalia Guillen ◽  
...  

The hypothesis that the unsaponifiable fraction of olive oil dramatically influences hepatic gene expression was tested in mice. Two olive oils, obtained from the same olive cultivar but by different technological procedures, were characterized to show that they differed mainly in terms of the composition/quantity of this unsaponifiable fraction. Using DNA microarrays, hepatic gene expression was analysed in apoE-deficient mice fed one of two isoenergetic, isonitrogenous diets containing either 10 % (w/w) olive oil or unsaponifiable fraction-enriched olive oil. To provide an initial screening of potential candidate genes involved in a differential response, only genes with remarkably modified expression (signal log2 ratio >3 or < − 3) were further considered. The eleven genes fulfilling these prerequisites were confirmed by quantitative RT–PCR, and then analysed in apoE-deficient mice with a C57BL/6J genetic background. Orosomucoid and serum amyloid A2 were upregulated (to variable extents depending on the genetic background) in the absence of hepatic steatosis and inflammation. Fabp5 and Mt2 were also strongly upregulated. Several proteases were highly suppressed by the unsaponifiable-enriched olive diet, independent of the genetic background. The findings indicate that change in the expression of these genes is a good marker of the intake of the unsaponifiable fraction of olive oil. The results highlight the important biological effects of the unsaponifiable fraction of olive oil. The term ‘monounsaturated fatty acid-enriched oil’ no longer appears appropriate for describing all the oils to which it is currently applied since it does not adequately reflect that they have different biological effects.


2017 ◽  
pp. 67-74 ◽  
Author(s):  
Masashi Morita ◽  
Ayako Honda ◽  
Akira Kobayashi ◽  
Yuichi Watanabe ◽  
Shiro Watanabe ◽  
...  

2009 ◽  
Vol 37 (3) ◽  
pp. 187-198 ◽  
Author(s):  
Natalia Guillén ◽  
María A. Navarro ◽  
Carmen Arnal ◽  
Enda Noone ◽  
José M. Arbonés-Mainar ◽  
...  

Trans-10, cis-12-conjugated linoleic acid (CLA)-enriched diets promote fatty liver in mice, while cis-9, trans-11-CLA ameliorates this effect, suggesting regulation of multiple genes. To test this hypothesis, apoE-deficient mice were fed a Western-type diet enriched with linoleic acid isomers, and their hepatic gene expression was analyzed with DNA microarrays. To provide an initial screening of candidate genes, only 12 with remarkably modified expression between both CLA isomers were considered and confirmed by quantitative RT-PCR. Additionally mRNA expression of 15 genes involved in lipid metabolism was also studied. Ten genes (Fsp27, Aqp4, Cd36, Ly6d, Scd1, Hsd3b5, Syt1, Cyp7b1, and Tff3) showed significant associations among their expressions and the degree of hepatic steatosis. Their involvement was also analyzed in other models of steatosis. In hyperhomocysteinemic mice lacking Cbs gene, only Fsp27, Cd36, Scd1, Syt1, and Hsd3b5 hepatic expressions were associated with steatosis. In apoE-deficient mice consuming olive-enriched diet displaying reduction of the fatty liver, only Fsp27 and Syt1 expressions were found associated. Using this strategy, we have shown that expression of these genes is highly associated with hepatic steatosis in a genetic disease such as Cbs deficiency and in two common situations such as Western diets containing CLA isomers or a Mediterranean-type diet. Conclusion: The results highlight new processes involved in lipid handling in liver and will help to understand the complex human pathology providing new proteins and new strategies to cope with hepatic steatosis.


2014 ◽  
Vol 84 (3-4) ◽  
pp. 0183-0195 ◽  
Author(s):  
Takashi Nakamura ◽  
Tomoya Takeda ◽  
Yoshihiko Tokuji

The common water-soluble organic germanium compound poly-trans-[(2-carboxyethyl) germasesquioxane] (Ge-132) exhibits activities related to immune responses and antioxidant induction. In this study, we evaluated the antioxidative effect of dietary Ge-132 in the plasma of mice. Male ICR mice (seven mice per group) received an AIN-76 diet with 0.05 % Ge-132; three groups received the Ge-132-containing diet for 0, 1 or 4 days. The plasma alpha-tocopherol (α-tocopherol) concentration increased from 6.85 to 9.60 μg/ml after 4 days of Ge-132 intake (p < 0.05). We evaluated the changes in hepatic gene expression related to antioxidative activity as well as in the entire expression profile after one day of Ge-132 intake, using DNA microarray technology. We identified 1,220 genes with altered expression levels greater than 1.5-fold (increased or decreased) as a result of Ge-132 intake, and α-tocopherol transfer protein (Ttpa) gene expression was increased 1.62-fold. Immune activation was identified as the category with the most changes (containing 60 Gene Ontology (GO) term biological processes (BPs), 41 genes) via functional clustering analysis of altered gene expression. Ge-132 affected genes in clusters related to ATP production (22 GO term BPs, 21 genes), lipid metabolism (4 GO term BPs, 38 genes) and apoptosis (5 GO term BPs). Many GO term BPs containing these categories were significantly affected by the Ge-132 intake. Oral Ge-132 intake may therefore have increased plasma α-tocopherol levels by up-regulating α-tocopherol transfer protein (Ttpa) gene expression.


2012 ◽  
Vol 142 (5) ◽  
pp. S-988
Author(s):  
Satoru Kakizaki ◽  
Hiroki Tojima ◽  
Yuichi Yamazaki ◽  
Daichi Takizawa ◽  
Norio Horiguchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document