Metoprolol Stimulates the Cardiac Na+–K+ Pump by Reducing the Baseline Glutathiolynation of its beta1 Subunit

2010 ◽  
Vol 19 ◽  
pp. S90
Author(s):  
K. Karimi Galougahi ◽  
C. Liu ◽  
A. Garcia ◽  
E. Hamilton ◽  
G. Figtree ◽  
...  
Keyword(s):  
2018 ◽  
Vol 114 (3) ◽  
pp. 480a
Author(s):  
Maria Simakova ◽  
Shivantika Bisen ◽  
Kelsey Cleland ◽  
Avia Rosenhouse-Dantsker ◽  
Alex Dopico ◽  
...  

1997 ◽  
Vol 272 (3) ◽  
pp. L400-L406 ◽  
Author(s):  
K. D. Bloch ◽  
G. Filippov ◽  
L. S. Sanchez ◽  
M. Nakane ◽  
S. M. de la Monte

Nitric oxide (NO) has an important role in the pulmonary vasodilatation associated with the transition from fetal to neonatal life. NO activates pulmonary soluble guanylate cyclase (sGC), an obligate heterodimer composed of alpha1- and beta1-subunits, increasing synthesis of guanosine 3',5'-cyclic monophosphate (cGMP) and leading to vasodilation. In this study, regulation of sGC subunit expression during pulmonary development was examined. RNA blot hybridization revealed abundant alpha1- and beta1-subunit mRNA in lungs of late-gestation fetal and neonatal Sprague-Dawley rats, with markedly reduced levels detected in adult lungs. Pulmonary sGC enzyme activity in the presence of 1 mM sodium nitroprusside, a NO-donor compound, was approximately sevenfold greater in 1- and 8-day-old rats than in adult rats (P < 0.03). With the use of immunoblot techniques, pulmonary alpha1-subunit concentrations closely correlated with mRNA levels. With in situ hybridization, alpha1- and beta1-subunit mRNAs were readily detected in pulmonary vascular and bronchial smooth muscle cells as well as alveolar and serosal epithelial cells in lungs of 1-day-old rats. In adult lungs, sGC subunit mRNAs were present at low levels and were found nearly exclusively in bronchial and vascular smooth muscle cells. These results demonstrate that abundant pulmonary sGC is available to respond to the increased NO produced during the perinatal period. High-level expression of sGC subunit genes outside the vasculature of lungs of 1-day-old rats suggests an important role for NO-cGMP signal transduction in the perinatal regulation of pulmonary epithelial function and bronchial tone.


1998 ◽  
Vol 102 (7) ◽  
pp. 1421-1430 ◽  
Author(s):  
P Factor ◽  
F Saldias ◽  
K Ridge ◽  
V Dumasius ◽  
J Zabner ◽  
...  

2018 ◽  
Vol 280 ◽  
pp. S84
Author(s):  
Joana Ribeiro ◽  
Marco Simoes ◽  
Claudia Lopes ◽  
Catia Costa ◽  
Elena Baena Gonzalez ◽  
...  

1997 ◽  
Vol 110 (12) ◽  
pp. 1421-1430 ◽  
Author(s):  
L. Vignoud ◽  
C. Albiges-Rizo ◽  
P. Frachet ◽  
M.R. Block

With the exception of the divergent beta4 and beta8 chains, the integrin beta subunit cytoplasmic domains are short and highly conserved sequences. Consensus motifs are found among the different cytoplasmic beta chains. Experiments using chimeric receptors demonstrated that the 47 amino acids of the beta1 subunit cytoplasmic domain contain sufficient information to target integrins to adhesion plaques. Three clusters of amino acids, named cyto-1, cyto-2 and cyto-3, seem to contribute to this localization. Cyto-2 and cyto-3 exhibit NPXY motifs. At present, the exact function of these motifs remains unknown but it is likely that these sequences are involved in protein-protein interactions. Although NPXY motifs often act as internalization signals at the cytoplasmic tail of membrane receptors, our previous results showed that the two NPXY motifs are not responsible for the alpha5beta1 integrin endocytosis. Herein, we address the question of the role of the two highly conserved NPXY motifs found in the beta1 cytoplasmic domain, and which correspond to the conserved domains cyto-2 and cyto-3. We demonstrate that, within the integrin beta1 cytoplasmic tail, the two NPXY motifs are required for the recruitment of the integrin in focal adhesions. In addition, our results indicate that these two motifs control but do not belong to the talin-binding sites. Finally, the analysis of the phenotypes of NPXY mutants reveals that the interaction of talin with the beta1 cytosolic domain is not sufficient to target the integrins to focal adhesions.


2000 ◽  
Vol 47 (2) ◽  
pp. 427-434 ◽  
Author(s):  
A Lityńska ◽  
M Przybyło ◽  
D Ksiazek ◽  
P Laidler

Expression as well as properties of integrins are altered upon transformation. Cell adhesion regulated by integrins is modulated by glycosylation, one of the most frequent biochemical alteration associated with tumorogenesis. Characterisation of carbohydrate moieties of alpha3beta1 integrin on the cultured human bladder carcinoma (T-24, Hu456, HCV 29T) and human normal ureter and bladder epithelium (HCV 29, Hu609) cell lines was carried out after an electrophoresis and blotting, followed by immunochemical identification of alpha3 and beta1 integrin chains and analysis of their carbohydrates moieties using highly specific digoxigenin-labelled lectins. In all the studied cell lines alpha3beta1 integrin was glycosylated although in general each subunit differently. Basic structures recognized in beta1 subunit were tri- or tetraantennary complex type glycans in some cases sialylated (T-24, HCV 29, HCV 29T) and fucosylated (Hu609, HCV 29T). Positive reaction with Phaseolus vulgaris agglutinin and Datura stramonium agglutinin suggesting the presence of beta1-6 branched N-linked oligosaccharides was found in cancerous cell lines (T-24, Hu456) as well as in normal bladder epithelium cells (Hu609). High mannose type glycan was found only in beta1 subunit from Hu456 transitional cell cancer line. On the other hand alpha3 subunit was much less glycosylated except the invasive cancer cell line T-24 where high mannose as well as sialylated tri- or tetraantennary complex type glycans were detected. This observation suggests that changes in glycosylation profile attributed to invasive phenotype are rather associated with alpha3 not beta1 subunit.


1997 ◽  
Vol 272 (3) ◽  
pp. C923-C930 ◽  
Author(s):  
S. G. Wang ◽  
K. A. Eakle ◽  
R. Levenson ◽  
R. A. Farley

Amino acids N886-A911 of the rat Na+-K+-ATPase alpha3-subunit were replaced by the corresponding region (Q905-V930) of the rat gastric H+-K+-ATPase alpha-subunit. The chimera (NGH26) was expressed in yeast with the rat Na+-K+ -ATPase beta1-subunit (rbeta1), the rat H+-K+-ATPase beta-subunit (HKbeta), the chimeric beta-subunit NHbeta1 (containing the carboxy-terminal ectodomain of HKbeta), or the chimeric beta-subunit HNbeta1 (containing the carboxy-terminal ectodomain of rbeta1). Increased resistance to trypsin digestion indicated that NGH26 preferentially assembled with HKbeta and NHbeta1 rather than with rbeta1 or HNbeta1. Ouabain binding also indicated that more functional complexes were assembled when NGH26 was expressed with HKbeta or NHbeta1. These results suggest that the sequence Q905-V930 interacts with the HKbeta-subunit on the extracellular side of the cell membrane. The NGH26 + HKbeta complex is less stable than alpha3 + HKbeta when heated and also has a lower binding affinity for ouabain [dissociation constant (Kd) = 63 nM] compared with alpha3 + rbeta1 or alpha3 + HKbeta (K(d) = 5-10 nM). In contrast, the NGH26+NHbeta1 complex is thermally as stable as alpha3 + rbeta1 complexes, and its ouabain binding affinity (K(d) = 10 nM) is the same as the wild type. These results indicate that the amino acids Q905-V930 of the rat gastric H+-K+-ATPase alpha-subunit preferentially associate with the extracellular domain of H+-K+-ATPase beta-subunit to form functional pump complexes and that the cytoplasmic and/or transmembrane region of the beta-subunit influences the stability of the alpha beta complexes.


2019 ◽  
Vol 116 (3) ◽  
pp. 541a
Author(s):  
Anna N. Bukiya ◽  
Guruprasad Kuntamallappanavar ◽  
Abby L. Parrill ◽  
Alex M. Dopico
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document