scholarly journals Monocarboxylate transporter upregulation supporting the reverse warburg effect in the tumour microenvironment of pancreatic ductal adenocarcinoma

HPB ◽  
2016 ◽  
Vol 18 ◽  
pp. e773
Author(s):  
J. Moir ◽  
J. Mann ◽  
D. Mann ◽  
S. White
2018 ◽  
Vol 50 (3) ◽  
pp. 924-935 ◽  
Author(s):  
De-Hai Wu ◽  
Hao Liang ◽  
Shou-Nan Lu ◽  
Hao Wang ◽  
Zhi-Lei Su ◽  
...  

Background/Aims: Increasing evidence shows that reprogramming of energy metabolism is a hallmark of cancer. Considering the emergence of microRNAs as crucial modulators of cancer, this study aimed to better understand the molecular mechanisms of miR-124 in regulating glycolysis in human pancreatic cancer. Methods: RT-PCR was used to investigate the expression of monocarboxylate transporters (MCTs) in pancreatic ductal adenocarcinoma (PDAC) patient samples and the PANC-1 cell line. A public database and immunochemistry were used for comprehensive analysis of MCT1 expression. The targeting of MCT1 by miR-124 was predicted by software and validated for the MCT1 3’-UTR by dual-luciferase reporter analysis. Cell proliferation, apoptosis, migration, xenografting, and the intracellular pH and L-lactate levels were assessed. Hypoxia-inducible factor-α (HIF-1α) and lactate dehydrogenase A (LDH-A) expression levels were determined by RT-PCR and western blotting. Results: MCT1 expression was higher in PDAC tissue than in normal tissue. Inhibition of MCT1 affected lactate metabolism, resulting in a higher intracellular pH and less proliferation of PANC-1 cells. MCT1 was the target gene of miR-124. In in vitro experiments, miR-124 inhibited the glycolytic activity of PANC-1 cells by targeting MCT1, further decreasing the tumor phenotype by increasing the intracellular pH through LDH-A and HIF-1α. In in vivo experiments, overexpression of miR-124 and silencing of MCT1 significantly inhibited tumor growth. Conclusion: miR-124 inhibits the progression of PANC-1 by targeting MCT1 in the lactate metabolic pathway. Our findings provide novel evidence for further functional studies of miR-124, which might be useful for future therapeutic approaches to PDAC.


Pancreatology ◽  
2017 ◽  
Vol 17 (3) ◽  
pp. S4
Author(s):  
Sarah Brumskill ◽  
Lawrence Barrera ◽  
Fiona Campbell ◽  
Chris Halloran ◽  
John Neoptolemos ◽  
...  

2021 ◽  
Vol 12 (11) ◽  
Author(s):  
Chao-Hui Chang ◽  
Siim Pauklin

AbstractPancreatic cancer (PC) is one of the leading causes of cancer-related death worldwide due to delayed diagnosis and limited treatments. More than 90% of all pancreatic cancers are pancreatic ductal adenocarcinoma (PDAC). Extensive communication between tumour cells and other cell types in the tumour microenvironment have been identified which regulate cancer hallmarks during pancreatic tumorigenesis via secretory factors and extracellular vesicles (EVs). The EV-capsuled factors not only facilitate tumour growth locally, but also enter circulation and reach distant organs to construct a pre-metastatic niche. In this review, we delineate the key factors in pancreatic ductal adenocarcinoma derived EVs that mediate different tumour processes. Also, we highlight the factors that are related to the crosstalk with cancer stem cells/cancer-initiating cells (CSC/CIC), the subpopulation of cancer cells that can efficiently metastasize and resist currently used chemotherapies. Lastly, we discuss the potential of EV-capsuled factors in early diagnosis and antitumour therapeutic strategies.


2020 ◽  
Author(s):  
Shivan Sivakumar ◽  
Enas Abu-Shah ◽  
David J Ahern ◽  
Edward H Arbe-Barnes ◽  
Nagina Mangal ◽  
...  

AbstractObjectivePancreatic cancer has the worst prognosis of any human malignancy and leukocyte infiltration is a major prognostic marker of the disease. As current immunotherapies confer negligible survival benefits, there is a need to better characterise leukocytes in pancreatic cancer to identify better therapeutic strategies.DesignIn this study, a multi-parameter mass-cytometry analysis was performed on 32,000 T-cells from eight human pancreatic cancer patients. Single-cell RNA sequencing dataset analysis was performed on a cohort of 24 patients. Multiplex immunohistochemistry imaging and spatial analysis were performed to map immune infiltration into the tumour microenvironment.ResultsRegulatory T-cell populations demonstrated highly immunosuppressive states with high TIGIT, ICOS and CD39 expression. CD8+ T-cells were found to be either in senescence or an exhausted state. The exhausted CD8 T-cells had low PD-1 expression but high TIGIT and CD39 expression. These findings were corroborated in an independent pancreatic cancer single-cell RNA dataset from 24 patients.ConclusionsThese data suggest that T-cells are major players in the suppressive microenvironment of pancreatic cancer. Our work identifies novel therapeutic targets that should form the basis for rational design of a new generation of clinical trials in pancreatic ductal adenocarcinoma.Statement of SignificanceThis study elucidates the T-cell phenotypes in pancreatic ductal adenocarcinoma (PDAC). T-cells potentiate immune-suppression through an activated regulatory T-cell population expressing high TIGIT, ICOS and CD39. CD8+ T-cells were primarily senescent or TIGIT+ exhausted, but with minimal PD-1 expression. These findings propose new immunotherapy targets for PDAC.


Cells ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 424 ◽  
Author(s):  
Francesca Saini ◽  
Richard H. Argent ◽  
Anna M. Grabowska

Pancreatic ductal adenocarcinoma (PDAC) is characterised by desmoplasia, thought to support progression and chemotherapeutic resistance. The Hedgehog pathway is known to play an important role in this cancer. While the upregulation of Sonic hedgehog (Shh) in the epithelium of PDAC is known, we investigated its expression in the tumour microenvironment in order to find new targets for new chemotherapeutical approaches. Immunohistochemistry was used for the investigation of Shh and Vimentin in primary human pancreatic tissues. Gene (qRT-PCR) and protein (immunofluorescence) expression of Shh, αSMA (a marker of the mesenchymal phenotype) and periostin (a marker of mesenchymal cells within a mixed population) were investigated in in vitro cell models. Shh expression was significantly upregulated in the stromal and epithelial compartments of poorly-differentiated PDAC samples, with a strong correlation with the amount of stroma present. Characterisation of stromal cells showed that there was expression of Shh ligand in a mixed population comprising αSMA+ myofibroblasts and αSMA− mesenchymal stem cells. Moreover, we demonstrated the interaction between these cell lines by showing a higher rate of mesenchymal cell proliferation and the upregulation of periostin. Therefore, targeting stromal Shh could affect the equilibrium of the tumour microenvironment and its contribution to tumour growth.


2018 ◽  
Vol 9 (2) ◽  
Author(s):  
Huilin Ye ◽  
Quanbo Zhou ◽  
Shangyou Zheng ◽  
Guolin Li ◽  
Qing Lin ◽  
...  

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Yunzhen Qian ◽  
Yitao Gong ◽  
Zhiyao Fan ◽  
Guopei Luo ◽  
Qiuyi Huang ◽  
...  

Abstract Pancreatic ductal adenocarcinoma (PDAC) is a malignancy characterized by a poor prognosis and high mortality rate. Genetic mutations and altered molecular pathways serve as targets in precise therapy. Using next-generation sequencing (NGS), these aberrant alterations can be identified and used to develop strategies that will selectively kill cancerous cells in patients with PDAC. The realization of targeted therapies in patients with PDAC may be summarized by three approaches. First, because oncogenes play a pivotal role in tumorigenesis, inhibition of dysregulated oncogenes is a promising method (Table 3). Numerous researchers are developing strategies to target oncogenes, such as KRAS, NRG1, and NTRK and related molecules, although most of the results are unsatisfactory. Accordingly, emerging strategies are being developed to target these oncogenes, including simultaneously inhibiting multiple molecules or pathways, modification of mutant residues by small molecules, and RNA interference. Second, researchers have attempted to reactivate inactivated tumour suppressors or modulate related molecules. TP53, CDKN2A and SMAD4 are three major tumour suppressors involved in PDAC. Advances have been achieved in clinical and preclinical trials of therapies targeting these three genes, and further investigations are warranted. The TGF-β-SMAD4 signalling pathway plays a dual role in PDAC tumorigenesis and participates in mediating tumour-stroma crosstalk and modulating the tumour microenvironment (TME); thus, molecular subtyping of pancreatic cancer according to the SMAD4 mutation status may be a promising precision oncology technique. Finally, genes such as KDM6A and BRCA have vital roles in maintaining the structural stability and physiological functions of normal chromosomes and are deficient in some patients with PDAC, thus serving as potential targets for correcting these deficiencies and precisely killing these aberrant tumour cells. Recent clinical trials, such as the POLO (Pancreas Cancer Olaparib Ongoing) trial, have reported encouraging outcomes. In addition to genetic event-guided treatment, immunotherapies such as chimeric antigen receptor T cells (CAR-T), antibody-drug conjugates, and immune checkpoint inhibitors also exhibit the potential to target tumours precisely, although the clinical value of immunotherapies as treatments for PDAC is still limited. In this review, we focus on recent preclinical and clinical advances in therapies targeting aberrant genes and pathways and predict the future trend of precision oncology for PDAC.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Caroline Y. K. Fong ◽  
Emma Burke ◽  
David Cunningham ◽  
Naureen Starling

Despite intensive research efforts, pancreatic ductal adenocarcinoma is still regarded as an aggressive and life-limiting malignancy. Combination chemotherapy regimens that underpin the current treatment approach in the advanced setting have led to incremental survival gains in recent years but have failed to confer patients with a median overall survival that exceeds 12 months from diagnosis. Research has since focussed on understanding the role and interplay between various components of the desmoplastic stroma and tumour microenvironment, in addition to developing targeted therapies based on molecular features to improve the prognosis associated with this malignancy. This review will summarise the available systemic treatment options and discuss potential methods to refine the resolution of patient selection to enhance responses to currently available therapies. Furthermore, it will explore newer approaches anticipated to come to the fore of future clinical practice, such as agents targeting the DNA damage response and tumour microenvironment as well as immunotherapy-based combinations.


Sign in / Sign up

Export Citation Format

Share Document