scholarly journals Electromechanical and structural alterations in the aging rabbit heart and aorta

2012 ◽  
Vol 302 (8) ◽  
pp. H1625-H1635 ◽  
Author(s):  
Leroy L. Cooper ◽  
Katja E. Odening ◽  
Min-Sig Hwang ◽  
Leonard Chaves ◽  
Lorraine Schofield ◽  
...  

Aging increases the risk for arrhythmias and sudden cardiac death (SCD). We aimed at elucidating aging-related electrical, functional, and structural changes in the heart and vasculature that account for this heightened arrhythmogenic risk. Young (5–9 mo) and old (3.5–6 yr) female New Zealand White (NZW) rabbits were subjected to in vivo hemodynamic, electrophysiological, and echocardiographic studies as well as ex vivo optical mapping, high-field magnetic resonance imaging (MRI), and histochemical experiments. Aging increased aortic stiffness (baseline pulse wave velocity: young, 3.54 ± 0.36 vs. old, 4.35 ± 0.28 m/s, P < 0.002) and diastolic (end diastolic pressure-volume relations: 3.28 ± 0.5 vs. 4.95 ± 1.5 mmHg/ml, P < 0.05) and systolic (end systolic pressure-volume relations: 20.56 ± 4.2 vs. 33.14 ± 8.4 mmHg/ml, P < 0.01) myocardial elastances in old rabbits. Electrophysiological and optical mapping studies revealed age-related slowing of ventricular and His-Purkinje conduction (His-to-ventricle interval: 23 ± 2.5 vs. 31.9 ± 2.9 ms, P < 0.0001), altered conduction anisotropy, and a greater inducibility of ventricular fibrillation (VF, 3/12 vs. 7/9, P < 0.05) in old rabbits. Histochemical studies confirmed an aging-related increased fibrosis in the ventricles. MRI showed a deterioration of the free-running Purkinje fiber network in ventricular and septal walls in old hearts as well as aging-related alterations of the myofibrillar orientation and myocardial sheet structure that may account for this slowed conduction velocity. Aging leads to parallel stiffening of the aorta and the heart, including an increase in systolic stiffness and contractility and diastolic stiffness. Increasingly, anisotropic conduction velocity due to fibrosis and altered myofibrillar orientation and myocardial sheet structure may contribute to the pathogenesis of VF in old hearts. The aging rabbit model represents a useful tool for elucidating age-related changes that predispose the aging heart to arrhythmias and SCD.

2000 ◽  
Vol 279 (3) ◽  
pp. H1000-H1006 ◽  
Author(s):  
John G. Lainchbury ◽  
Donna M. Meyer ◽  
Michihisa Jougasaki ◽  
John C. Burnett ◽  
Margaret M. Redfield

Myocardial actions of the vasodilator peptide adrenomedullin (ADM) in the intact animal are unknown. Negative and positive inotropic actions have been reported in ex vivo experiments. Myocardial and load-altering actions of ADM in dogs before and after development of heart failure were studied. With controlled heart rate (atrial pacing) and after β-blockade, ADM was administered to five normal dogs in doses of 20 ng · kg−1 · min−1 iv, 100 ng · kg−1 · min−1 iv, and 200 ng · kg−1 · min−1 into the left ventricle (LV). LV peak systolic pressure and end-systolic volume decreased with each dose of ADM. End-systolic pressure decreased with the two higher doses. At the highest dose, arterial elastance and the time constant of LV isovolumic relaxation (τ) decreased, and LV end-systolic elastance ( E es) increased. LV end-diastolic pressure and volume were unchanged. In five additional normal dogs receiving only the highest dose of ADM (200 ng · kg−1 · min−1 intra-LV), to control for increased heart rate and sympathetic activation observed with the cumulative infusion, ADM produced arterial vasodilation but no change in E es or τ. In four dogs with pacing-induced heart failure, ADM (200 ng · kg−1 · min−1 intra-LV) was without effect on τ, E es, and systolic or diastolic pressure and volume. In vivo, ADM appears to be a selective arterial dilator without inotropic or lusitropic effects. The vasodilatory actions are attenuated in heart failure.


1991 ◽  
Vol 260 (3) ◽  
pp. H909-H916 ◽  
Author(s):  
J. Tong ◽  
P. K. Ganguly ◽  
P. K. Singal

Changes in myocardial norepinephrine (NE) levels, turnover, uptake, and release in rats were examined at two stages of cardiac dysfunction induced by adriamycin (ADR) given intraperitoneally in six equal doses over a period of 2 wk for a cumulative dose of 15 mg/kg. At 3 wk posttreatment, ADR-treated animals showed no changes in left ventricular systolic pressure (LVSP), aortic systolic pressure (ASP), and aortic diastolic pressure (ADP) but left ventricular end-diastolic pressure (LVEDP) was significantly higher. At 6 wk posttreatment, LVSP, ASP, and ADP were significantly lower and LVEDP remained elevated. Animals in both ADR-treated groups showed signs of congestive heart failure as indicated by ascites, congestive liver, and elevated LVEDP. Structural changes typical of ADR cardiomyopathy were more pronounced in the 6-wk group. In vivo hemodynamic as well as in vitro muscle function response to different concentrations of epinephrine was depressed in its duration as well as extent in both 3- and 6-wk ADR-treated groups. Myocardial NE levels were increased in the 3-wk group but were depressed in the 6-wk group. NE turnover was faster in both 3- and 6-wk ADR groups, uptake was increased only in the 6-wk group, and release was unchanged. These data show increased cardiac sympathetic tone at both stages of ADR-induced congestive heart failure.


2010 ◽  
Vol 84 (10) ◽  
pp. 5124-5130 ◽  
Author(s):  
Rashade A. H. Haynes ◽  
Bevin Zimmerman ◽  
Laurie Millward ◽  
Evan Ware ◽  
Christopher Premanandan ◽  
...  

ABSTRACT Human T-lymphotropic virus type 1 (HTLV-1) infection causes adult T-cell leukemia/lymphoma (ATL) and is associated with a variety of lymphocyte-mediated disorders. HTLV-1 transmission occurs by transmission of infected cells via breast-feeding by infected mothers, sexual intercourse, and contaminated blood products. The route of exposure and early virus replication events are believed to be key determinants of virus-associated spread, antiviral immune responses, and ultimately disease outcomes. The lack of knowledge of early events of HTLV-1 spread following blood-borne transmission of the virus in vivo hinders a more complete understanding of the immunopathogenesis of HTLV-1 infections. Herein, we have used an established animal model of HTLV-1 infection to study early spatial and temporal events of the viral infection. Twelve-week-old rabbits were injected intravenously with cell-associated HTLV-1 (ACH-transformed R49). Blood and tissues were collected at defined intervals throughout the study to test the early spread of the infection. Antibody and hematologic responses were monitored throughout the infection. HTLV-1 intracellular Tax and soluble p19 matrix were tested from ex vivo cultured lymphocytes. Proviral copy numbers were measured by real-time PCR from blood and tissue mononuclear leukocytes. Our data indicate that intravenous infection with cell-associated HTLV-1 targets lymphocytes located in both primary lymphoid and gut-associated lymphoid compartments. A transient lymphocytosis that correlated with peak virus detection parameters was observed by 1 week postinfection before returning to baseline levels. Our data support emerging evidence that HTLV-1 promotes lymphocyte proliferation preceding early viral spread in lymphoid compartments to establish and maintain persistent infection.


2003 ◽  
Vol 81 (2) ◽  
pp. 125-128 ◽  
Author(s):  
Ghada S Hassan ◽  
Fazila Chouiali ◽  
Takayuki Saito ◽  
Fu Hu ◽  
Stephen A Douglas ◽  
...  

Recent studies have shown that the vasoactive peptide urotensin-II (U-II) exerts a wide range of action on the cardiovascular system of various species. In the present study, we determined the in vivo effects of U-II on basal hemodynamics and cardiac function in the anesthetized intact rat. Intravenous bolus injection of human U-II resulted in a dose-dependent decrease in mean arterial pressure and left ventricular systolic pressure. Cardiac contractility represented by ±dP/dt was decreased after injection of U-II. However, there was no significant change in heart rate or diastolic pressure. The present study suggests that upregulation of myocardial U-II may contribute to impaired myocardial function in disease conditions such as congestive heart failure.Key words: urotensin-II, rat, infusion, heart.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Pedram Honarpisheh ◽  
Juneyoung Lee ◽  
Anik Banerjee ◽  
Maria P. Blasco-Conesa ◽  
Parisa Honarpisheh ◽  
...  

Abstract Background The ability to distinguish resident microglia from infiltrating myeloid cells by flow cytometry-based surface phenotyping is an important technique for examining age-related neuroinflammation. The most commonly used surface markers for the identification of microglia include CD45 (low-intermediate expression), CD11b, Tmem119, and P2RY12. Methods In this study, we examined changes in expression levels of these putative microglia markers in in vivo animal models of stroke, cerebral amyloid angiopathy (CAA), and aging as well as in an ex vivo LPS-induced inflammation model. Results We demonstrate that Tmem119 and P2RY12 expression is evident within both CD45int and CD45high myeloid populations in models of stroke, CAA, and aging. Interestingly, LPS stimulation of FACS-sorted adult microglia suggested that these brain-resident myeloid cells can upregulate CD45 and downregulate Tmem119 and P2RY12, making them indistinguishable from peripherally derived myeloid populations. Importantly, our findings show that these changes in the molecular signatures of microglia can occur without a contribution from the other brain-resident or peripherally sourced immune cells. Conclusion We recommend future studies approach microglia identification by flow cytometry with caution, particularly in the absence of the use of a combination of markers validated for the specific neuroinflammation model of interest. The subpopulation of resident microglia residing within the “infiltrating myeloid” population, albeit small, may be functionally important in maintaining immune vigilance in the brain thus should not be overlooked in neuroimmunological studies.


2020 ◽  
Vol 13 (7) ◽  
pp. dmm045385
Author(s):  
Oren Gordon ◽  
Robert J. Miller ◽  
John M. Thompson ◽  
Alvaro A. Ordonez ◽  
Mariah H. Klunk ◽  
...  

ABSTRACTPost-surgical implant-associated spinal infection is a devastating complication commonly caused by Staphylococcus aureus. Biofilm formation is thought to reduce penetration of antibiotics and immune cells, contributing to chronic and difficult-to-treat infections. A rabbit model of a posterior-approach spinal surgery was created, in which bilateral titanium pedicle screws were interconnected by a plate at the level of lumbar vertebra L6 and inoculated with a methicillin-resistant S.aureus (MRSA) bioluminescent strain. In vivo whole-animal bioluminescence imaging (BLI) and ex vivo bacterial cultures demonstrated a peak in bacterial burden by day 14, when wound dehiscence occurred. Structures suggestive of biofilm, visualized by scanning electron microscopy, were evident up to 56 days following infection. Infection-induced inflammation and bone remodeling were also monitored using 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) and computed tomography (CT). PET imaging signals were noted in the soft tissue and bone surrounding the implanted materials. CT imaging demonstrated marked bone remodeling and a decrease in dense bone at the infection sites. This rabbit model of implant-associated spinal infection provides a valuable preclinical in vivo approach to investigate the pathogenesis of implant-associated spinal infections and to evaluate novel therapeutics.


1984 ◽  
Vol 247 (3) ◽  
pp. H371-H379 ◽  
Author(s):  
P. A. Anderson ◽  
K. L. Glick ◽  
A. Manring ◽  
C. Crenshaw

Developmental changes in contractility were sought in the fetal and postnatal sheep heart by using postextrasystolic potentiation and force, pressure, and wall-motion measures. Two different preparations were used, isolated myocardium and the chronically instrumented lamb. In the isolated muscle, the following increased significantly with age: force of contraction, the maximum rate of rise of force, and postextrasystolic potentiation. In the intact heart prior to birth [period of study, 20 +/- 4 (SD) days] heart rate (HR) fell significantly, and the following increased significantly: postextrasystolic potentiation [measured with the maximum rate of rise of left ventricular (LV) pressure (Pmax)], LV peak systolic pressure (LVP), end-diastolic dimension (EDD), end-systolic dimension (ESD), and aortic diastolic pressure. After birth, LVP, Pmax, HR, LVEDP, EDD, and ESD increased and postextrasystolic potentiation fell. The latter fall was not found in vitro and probably demonstrates a transient change in contractility, related to hormonal or neural stimulation. Over the subsequent postnatal days (6-122 days), HR fell while potentiation, EDD, and ESD increased significantly. Both in vitro and in vivo, the overall increase in postextrasystolic potentiation demonstrates a similar long-term change in contractility. The similarity of this change to that induced by mild hypertrophy suggests that development and mild hypertrophy alter myocardial contractility through a common mechanism.


DICP ◽  
1989 ◽  
Vol 23 (10) ◽  
pp. 750-756
Author(s):  
T. Allen Davis ◽  
Jeffrey C. Delafuente

Symptomatic orthostatic hypotension is a serious problem in the elderly because it can precipitate falls and fractures, myocardial infarctions, and strokes. Several disorders may cause symptomatic orthostatic hypotension including age-related changes in physiology, disorders of the autonomic nervous system, drugs, and a decrease in circulating blood volume. Orthostatic hypotension is defined as a fall in systolic pressure of at least 20–30 mm Hg and a fall in diastolic pressure of at least 10–15 mm Hg upon rising, with symptoms of cerebral ischemia. Management includes a search for reversible causes as well as nonpharmacologic and pharmacologic therapies. No single agent has been universally successful in relieving the symptoms of orthostatic hypotension. Trials of single agents or combinations of agents are needed to identify the most appropriate therapy for individual patients.


2015 ◽  
Vol 1 (1) ◽  
pp. 236-239 ◽  
Author(s):  
Sandra Stein ◽  
Christian Simroth-Loch ◽  
Sönke Langner ◽  
Stefan Hadlich ◽  
Oliver Stachs ◽  
...  

AbstractThe in vitro and in vivo characterization of intravitreal injections plays an important role in developing innovative therapy approaches. Using the established vitreous model (VM) and eye movement system (EyeMoS) the distribution of contrast agents with different molecular weight was studied in vitro. The impact of the simulated age-related vitreal liquefaction (VL) on drug distribution in VM was examined either with injection through the gel phase or through the liquid phase. For comparison the distribution was studied ex vivo in the porcine vitreous. The studies were performed in a magnetic resonance (MR) scanner. As expected, with increasing molecular weight the diffusion velocity and the visual distribution of the injected substances decreased. Similar drug distribution was observed in VM and in porcine eye. VL causes enhanced convective flow and faster distribution in VM. Confirming the importance of the injection technique in progress of VL, injection through gelatinous phase caused faster distribution into peripheral regions of the VM than following injection through liquefied phase. VM and MR scanner in combination present a new approach for the in vitro characterization of drug release and distribution of intravitreal dosage forms.


1999 ◽  
Vol 19 (2) ◽  
pp. 218-229 ◽  
Author(s):  
Evan D. Morris ◽  
Svetlana I. Chefer ◽  
Mark A. Lane ◽  
Raymond F. Muzic ◽  
Dean F. Wong ◽  
...  

The relation between striatal dopamine D2 receptor binding and aging was investigated in rhesus monkeys with PET. Monkeys (n = 18, 39 to 360 months of age) were scanned with 11C-raclopride; binding potential in the striatum was estimated graphically. Because our magnetic resonance imaging analysis revealed a concomitant relation between size of striatum and age, the dynamic positron emission tomography (PET) data were corrected for possible partial volume (PV) artifacts before parameter estimation. The age-related decline in binding potential was 1% per year and was smaller than the apparent effect if the age-related change in size was ignored. This is the first in vivo demonstration of a decline in dopamine receptor binding in nonhuman primates. The rate of decline in binding potential is consistent with in vitro findings in monkeys but smaller than what has been measured previously in humans using PET. Previous PET studies in humans, however, have not corrected for PV error, although a decline in striatal size with age has been demonstrated. The results of this study suggest that PV correction must be applied to PET data to accurately detect small changes in receptor binding that may occur in parallel with structural changes in the brain.


Sign in / Sign up

Export Citation Format

Share Document