Reconstruction of human swing leg motion with passive biarticular muscle models

2017 ◽  
Vol 52 ◽  
pp. 96-107 ◽  
Author(s):  
Maziar Ahmad Sharbafi ◽  
Aida Mohammadi Nejad Rashty ◽  
Christian Rode ◽  
Andre Seyfarth
2021 ◽  
pp. 1-11
Author(s):  
Kale Mehmet

BACKGROUND: There is insufficient knowledge about the rate of force development (RFD) characteristics over both single and multiple joint movements and the electromechanical delay (EMD) values obtained in athletes and untrained individuals. OBJECTIVE: To compare single and multiple joint functions and the neural drive of trained athletes and untrained individuals. METHODS: Eight trained athletes and 10 untrained individuals voluntarily participated to the study. The neuromuscular performance was assessed during explosive and maximum voluntary isometric contractions during leg press and knee extension related to single and multiple joint. Explosive force and surface electromyography of eight superficial lower limb muscles were measured in five 50-ms time windows from their onset, and normalized to peak force and electromyography activity at maximum voluntary force, respectively. The EMD was determined from explosive voluntary contractions (EVC’s). RESULTS: The results showed that there were significant differences in absolute forces during knee extension maximum voluntary force and EVC’s (p< 0.01) while trained athletes achieved greater relative forces than untrained individuals of EVC at all five time points (p< 0.05). CONCLUSIONS: The differences in explosive performance between trained athletes and untrained individuals in both movements may be explained by different levels of muscle activation within groups, attributed to variation in biarticular muscle function over both activities.


2017 ◽  
Vol 220 (9) ◽  
pp. 1643-1653 ◽  
Author(s):  
Taylor J. M. Dick ◽  
Andrew A. Biewener ◽  
James M. Wakeling

Robotica ◽  
2011 ◽  
Vol 30 (4) ◽  
pp. 627-633
Author(s):  
Surya P. N. Singh ◽  
Kenneth J. Waldron

SUMMARYThe gallop is the preferred gait by mammals for agile traversal through terrain. This motion is intrinsically complex as the feet are used individually and asymmetrically. Simple models provide a conceptual framework for understanding this gait. In this light, this paper considers the footfall projections as suggested by an impulse model for galloping as a measurement simplifying strategy. Instead of concentrating on forces and inverse dynamics, this view focuses observations on leg motion (footfalls and stance periods) for subsequent gallop analysis and parameter estimation. In practice, this eases experiments (particularly for IR-based motion capture) by extending the experimental workspace, removing the need for single-leg contact force-plate measurements, and reducing the marker set. This provides shorter setup times, and it reduces postprocessing as data are less likely to suffer from occlusion, errant correspondence, and tissue flexion. This approach is tested using with three canine subjects (ranging from 8 to 24 kg) performing primarily rotary gallops down a 15 m runway. Normalized results are in keeping with insights from previous animal and legged robot studies and are consistent with motions suggested by said impulse model.


Motor Control ◽  
2000 ◽  
Vol 4 (3) ◽  
pp. 329-349 ◽  
Author(s):  
Mark B. Shapiro ◽  
Robert V. Kenyon

2001 ◽  
Vol 204 (3) ◽  
pp. 471-486 ◽  
Author(s):  
N. Copp ◽  
M. Jamon

The kinematic patterns of defense turning behavior in freely behaving specimens of the crayfish Procambarus clarkii were investigated with the aid of a video-analysis system. Movements of the body and all pereiopods, except the chelipeds, were analyzed. Because this behavior approximates to a rotation in place, this analysis extends previous studies on straight and curve walking in crustaceans. Specimens of P. clarkii responded to a tactile stimulus on a walking leg by turning accurately to face the source of the stimulation. Angular velocity profiles of the movement of the animal's carapace suggest that defense turn responses are executed in two phases: an initial stereotyped phase, in which the body twists on its legs and undergoes a rapid angular acceleration, followed by a more erratic phase of generally decreasing angular velocity that leads to the final orientation. Comparisons of contralateral members of each pair of legs reveal that defense turns are affected by changes in step geometry, rather than by changes in the timing parameters of leg motion, although inner legs 3 and 4 tend to take more steps than their outer counterparts during the course of a response. During the initial phase, outer legs 3 and 4 exhibit larger stance amplitudes than their inner partners, and all the outer legs produce larger stance amplitudes than their inner counterparts during the second stage of the response. Also, the net vectors of the initial stances, particularly, are angled with respect to the body, with the power strokes of the inner legs produced during promotion and those of the outer legs produced during remotion. Unlike straight and curve walking in the crayfish, there is no discernible pattern of contralateral leg coordination during defense turns. Similarities and differences between defense turns and curve walking are discussed. It is apparent that rotation in place, as in defense turns, is not a simple variation on straight or curve walking but a distinct locomotor pattern.


2017 ◽  
Vol 27 (01) ◽  
pp. 1730003 ◽  
Author(s):  
Jorgelina Ramos ◽  
Stephen Lynch ◽  
David Jones ◽  
Hans Degens

This paper presents examples of hysteresis from a broad range of scientific disciplines and demonstrates a variety of forms including clockwise, counterclockwise, butterfly, pinched and kiss-and-go, respectively. These examples include mechanical systems made up of springs and dampers which have been the main components of muscle models for nearly one hundred years. For the first time, as far as the authors are aware, hysteresis is demonstrated in single fibre muscle when subjected to both lengthening and shortening periodic contractions. The hysteresis observed in the experiments is of two forms. Without any relaxation at the end of lengthening or shortening, the hysteresis loop is a convex clockwise loop, whereas a concave clockwise hysteresis loop (labeled as kiss-and-go) is formed when the muscle is relaxed at the end of lengthening and shortening. This paper also presents a mathematical model which reproduces the hysteresis curves in the same form as the experimental data.


Sign in / Sign up

Export Citation Format

Share Document