Surface processes at a polymetallic (Mn-Fe-Pb) sulfide subject to cyanide leaching under sonication conditions and with an alkaline pretreatment: Understanding differences in silver extraction with X-ray photoelectron spectroscopy (XPS)

2021 ◽  
Vol 200 ◽  
pp. 105544
Author(s):  
Gonzalo Larrabure ◽  
Sheyla Chero-Osorio ◽  
Dhamelyz Silva-Quiñones ◽  
Carsten Benndorf ◽  
Mackenzie Williams ◽  
...  
Minerals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 427 ◽  
Author(s):  
Dhamelyz Silva-Quiñones ◽  
Chuan He ◽  
Melissa Jacome-Collazos ◽  
Carsten Benndorf ◽  
Andrew Teplyakov ◽  
...  

Understanding the changes of a mineral during ore processing is of capital importance for the development of strategies aimed at increasing the efficiency of metal extraction. This task is often difficult due to the variability of the ore in terms of composition, mineralogy and texture. In particular, surface processes such as metal re-adsorption (preg-robbing) on specific minerals are difficult to evaluate, even though they may be of importance as the re-adsorbed material can be blocking the valuable mineral and negatively affect the extraction process. Here, we show a simple yet powerful approach, through which surface processes in individual minerals are identified by combining polarization microscopy (MP) and X-ray photoelectron spectroscopy (XPS). Taking as an example a silver-containing polymetallic sulfide ore from the Peruvian central Andes (pyrite-based with small amounts of galena), we track the changes in the sample during the course of cyanidation. While polarization microscopy is instrumental for identifying mineralogical species, XPS provides evidence of the re-adsorption of lead on a pyrite surface, possibly as lead oxide/hydroxide. The surface of pyrite does not show significant changes after the leaching process according to the microscopic results, although forms of oxidized iron are detected together with the re-adsorption of lead by XPS. Galena, embedded in pyrite, dissolves during cyanide leaching, as evidenced by PM and by the decrease of XPS signals at the positions associated with sulfide and sulfate. At the same time, the rise of a lead peak at a different position confirms that the re-adsorbed lead species cannot be sulfides or sulfates. Interestingly, lead is not detected on covellite surfaces during leaching, which shows that lead re-adsorption is a process that depends on the nature of the mineral. The methodology shown here is a tool of significant importance for understanding complex surface processes affecting various minerals during metal extraction.


2007 ◽  
Vol 329 ◽  
pp. 68-78 ◽  
Author(s):  
Izabela Czekaj ◽  
Francois Loviat ◽  
Fabio Raimondi ◽  
Jörg Wambach ◽  
Serge Biollaz ◽  
...  

2006 ◽  
Vol 132 ◽  
pp. 87-90
Author(s):  
M. El Kazzi ◽  
G. Delhaye ◽  
S. Gaillard ◽  
E. Bergignat ◽  
G. Hollinger

1987 ◽  
Vol 48 (C9) ◽  
pp. C9-1025-C9-1028 ◽  
Author(s):  
W. ZAHOROWSKI ◽  
A. SIMUNEK ◽  
G. WIECH ◽  
K. SÖLDNER ◽  
R. KNAUF ◽  
...  

2003 ◽  
Vol 780 ◽  
Author(s):  
C. Essary ◽  
V. Craciun ◽  
J. M. Howard ◽  
R. K. Singh

AbstractHf metal thin films were deposited on Si substrates using a pulsed laser deposition technique in vacuum and in ammonia ambients. The films were then oxidized at 400 °C in 300 Torr of O2. Half the samples were oxidized in the presence of ultraviolet (UV) radiation from a Hg lamp array. X-ray photoelectron spectroscopy, atomic force microscopy, and grazing angle X-ray diffraction were used to compare the crystallinity, roughness, and composition of the films. It has been found that UV radiation causes roughening of the films and also promotes crystallization at lower temperatures.Furthermore, increased silicon oxidation at the interface was noted with the UVirradiated samples and was shown to be in the form of a mixed layer using angle-resolved X-ray photoelectron spectroscopy. Incorporation of nitrogen into the film reduces the oxidation of the silicon interface.


2005 ◽  
Vol 879 ◽  
Author(s):  
Scott K. Stanley ◽  
John G. Ekerdt

AbstractGe is deposited on HfO2 surfaces by chemical vapor deposition (CVD) with GeH4. 0.7-1.0 ML GeHx (x = 0-3) is deposited by thermally cracking GeH4 on a hot tungsten filament. Ge oxidation and bonding are studied at 300-1000 K with X-ray photoelectron spectroscopy (XPS). Ge, GeH, GeO, and GeO2 desorption are measured with temperature programmed desorption (TPD) at 400-1000 K. Ge initially reacts with the dielectric forming an oxide layer followed by Ge deposition and formation of nanocrystals in CVD at 870 K. 0.7-1.0 ML GeHx deposited by cracking rapidly forms a contacting oxide layer on HfO2 that is stable from 300-800 K. Ge is fully removed from the HfO2 surface after annealing to 1000 K. These results help explain the stability of Ge nanocrystals in contact with HfO2.


2020 ◽  
Author(s):  
Jennifer A. Rudd ◽  
Ewa Kazimierska ◽  
Louise B. Hamdy ◽  
Odin Bain ◽  
Sunyhik Ahn ◽  
...  

The utilization of carbon dioxide is a major incentive for the growing field of carbon capture. Carbon dioxide could be an abundant building block to generate higher value products. Herein, we describe the use of porous copper electrodes to catalyze the reduction of carbon dioxide into higher value products such as ethylene, ethanol and, notably, propanol. For <i>n</i>-propanol production, faradaic efficiencies reach 4.93% at -0.83 V <i>vs</i> RHE, with a geometric partial current density of -1.85 mA/cm<sup>2</sup>. We have documented the performance of the catalyst in both pristine and urea-modified foams pre- and post-electrolysis. Before electrolysis, the copper electrode consisted of a mixture of cuboctahedra and dendrites. After 35-minute electrolysis, the cuboctahedra and dendrites have undergone structural rearrangement. Changes in the interaction of urea with the catalyst surface have also been observed. These transformations were characterized <i>ex-situ</i> using scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. We found that alterations in the morphology, crystallinity, and surface composition of the catalyst led to the deactivation of the copper foams.


Sign in / Sign up

Export Citation Format

Share Document