Topochemical and light microscopic investigations of non-enzymatic oxidative changes at the initial decay stage of furfuryl alcohol-modified radiata pine (Pinus radiata) degraded by the brown rot fungus Rhodonia placenta

2020 ◽  
Vol 154 ◽  
pp. 105020
Author(s):  
G. Ehmcke ◽  
G. Koch ◽  
K. Richter ◽  
A. Pilgård
Holzforschung ◽  
2017 ◽  
Vol 71 (10) ◽  
pp. 821-831 ◽  
Author(s):  
Gabriele Ehmcke ◽  
Annica Pilgård ◽  
Gerald Koch ◽  
Klaus Richter

AbstractFurfurylation is one of the wood modification techniques via catalytic polymerization of the monomeric furfuryl alcohol (FA) in the impregnated cell wall. Little is known about the topochemistry of this process. Brown rot degradation begins with lignin modification and therefore, the reactions between FA and lignin was one focus of this research. Furfurylated radiata pine (Pinus radiata) with three different weight percent gains (WPGs of 57%, 60% and 70%) after FA uptake was observed by cellular ultraviolet microspectrophotometry (UMSP) to analyze chemical alterations of the individual cell wall layers. Moreover, light microscopy (LM) and scanning electron microscopy (SEM) analyses were performed. The ultraviolet (UV) absorbance of the modified samples increased significantly compared to the untreated controls, indicating a strong polymerization of the aromatic compounds. Highest UV absorbances were found in areas with the highest lignin concentration. The UMSP images of individual cell wall layers support the hypothesis concerning condensation reactions between lignin and FA.


Holzforschung ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Jianfeng Xu ◽  
Xiaoyan Li ◽  
Ling Long ◽  
Ru Liu

AbstractIn this work, a novel waterborne hyperbranched polyacrylate (HBPA) dispersed organo-montmorillonite (OMMT) emulsion was synthesized and used for the treatment of wood in a vacuum environment in order to enhance the physical and mechanical properties of the wood. The sapwood of Cathay poplar (Populus cathayana Rehd.) and Radiata pine (Pinus radiata D.Don) were used as the samples for experimentation. The results showed that the physical and mechanical properties of the wood improved significantly due to the successful penetration of the OMMT and HBPA into the wood cell wall. From it was also observed that OMET completely exfoliated from the HBPA matrix and formed a hydrophobic film covering on the inside walls of the cell lumen. Further, it was observed that the poplar sample displayed better mechanical properties than the pine sample because the pine has a more compact structure when compared to poplar and contains rosin. Furthermore, it was also observed that the mechanical properties of the modified wood sample gradually improved with an increase in the concentration of the emulsion. However, excessive concentration (>4 wt%) did not lead to further improvement.


2016 ◽  
Vol 82 (22) ◽  
pp. 6557-6572 ◽  
Author(s):  
Yuka Kojima ◽  
Anikó Várnai ◽  
Takuya Ishida ◽  
Naoki Sunagawa ◽  
Dejan M. Petrovic ◽  
...  

ABSTRACTFungi secrete a set of glycoside hydrolases and lytic polysaccharide monooxygenases (LPMOs) to degrade plant polysaccharides. Brown-rot fungi, such asGloeophyllum trabeum, tend to have few LPMOs, and information on these enzymes is scarce. The genome ofG. trabeumencodes four auxiliary activity 9 (AA9) LPMOs (GtLPMO9s), whose coding sequences were amplified from cDNA. Due to alternative splicing, two variants ofGtLPMO9A seem to be produced, a single-domain variant,GtLPMO9A-1, and a longer variant,GtLPMO9A-2, which contains a C-terminal domain comprising approximately 55 residues without a predicted function. We have overexpressed the phylogenetically distinctGtLPMO9A-2 inPichia pastorisand investigated its properties. Standard analyses using high-performance anion-exchange chromatography–pulsed amperometric detection (HPAEC-PAD) and mass spectrometry (MS) showed thatGtLPMO9A-2 is active on cellulose, carboxymethyl cellulose, and xyloglucan. Importantly, compared to other known xyloglucan-active LPMOs,GtLPMO9A-2 has broad specificity, cleaving at any position along the β-glucan backbone of xyloglucan, regardless of substitutions. Using dynamic viscosity measurements to compare the hemicellulolytic action ofGtLPMO9A-2 to that of a well-characterized hemicellulolytic LPMO,NcLPMO9C fromNeurospora crassarevealed thatGtLPMO9A-2 is more efficient in depolymerizing xyloglucan. These measurements also revealed minor activity on glucomannan that could not be detected by the analysis of soluble products by HPAEC-PAD and MS and that was lower than the activity ofNcLPMO9C. Experiments with copolymeric substrates showed an inhibitory effect of hemicellulose coating on cellulolytic LPMO activity and did not reveal additional activities ofGtLPMO9A-2. These results provide insight into the LPMO potential ofG. trabeumand provide a novel sensitive method, a measurement of dynamic viscosity, for monitoring LPMO activity.IMPORTANCECurrently, there are only a few methods available to analyze end products of lytic polysaccharide monooxygenase (LPMO) activity, the most common ones being liquid chromatography and mass spectrometry. Here, we present an alternative and sensitive method based on measurement of dynamic viscosity for real-time continuous monitoring of LPMO activity in the presence of water-soluble hemicelluloses, such as xyloglucan. We have used both these novel and existing analytical methods to characterize a xyloglucan-active LPMO from a brown-rot fungus. This enzyme,GtLPMO9A-2, differs from previously characterized LPMOs in having broad substrate specificity, enabling almost random cleavage of the xyloglucan backbone.GtLPMO9A-2 acts preferentially on free xyloglucan, suggesting a preference for xyloglucan chains that tether cellulose fibers together. The xyloglucan-degrading potential ofGtLPMO9A-2 suggests a role in decreasing wood strength at the initial stage of brown rot through degradation of the primary cell wall.


1970 ◽  
Vol 24 ◽  
pp. 3379-3390 ◽  
Author(s):  
T. Kent Kirk ◽  
Erich Adler ◽  
Olof Wahlberg ◽  
Erik Larsen ◽  
Akira Shimizu

2004 ◽  
Vol 34 (12) ◽  
pp. 2410-2423 ◽  
Author(s):  
S D Carson ◽  
M F Skinner ◽  
A T Lowe ◽  
M O Kimberley

Two intensive harvesting trials with contrasting nutrient capital were examined for genetic × environment interactions to age 5 years after planting. Treatments included differences in removal of organic matter and in site preparation and weed control, with each treatment having both fertilized and nonfertilized plots. Three harvest treatments (both fertilized and nonfertilized) were common to both sites, with two additional treatments at one site. There were four replicate plots of each treatment combination at each site, with two trees from each of three control seed lots and 47 open-pollinated families chosen to represent the range of performance for growth planted in each plot. Large differences among sites and among treatments in both growth and foliar nutrient concentration were observed. Genetic × site interactions and genetic × treatment within site interactions were seldom significant. Significant interactions did not appear to be related to changes in rankings of families, but rather to the differences in variance among families in different treatments. This study suggests that selection of specific radiata pine (Pinus radiata D. Don) families for better growth performance on nutrient-deficient sites in New Zealand would not result in substantial improvement over selection for growth on all sites disregarding nutrient availability.


2011 ◽  
Vol 6 (2) ◽  
pp. 166-171 ◽  
Author(s):  
Varenyam Achal ◽  
Deepika Kumari ◽  
Xiangliang Pan

2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Jinguang Wei ◽  
Fei Rao ◽  
Yuxiang Huang ◽  
Yahui Zhang ◽  
Yue Qi ◽  
...  

Natural wood has certain advantages such as good processability and high specific strength and thus has been used for millennium as a structural material. But the mechanical performance and water resistance, particularly for fast-growing species, are unsatisfactory for high-end applications. In this study, the “new-type” scrimber technology was introduced to radiata pine (Pinus radiata D. Don) scrimbers. The structure, mechanical properties, and dimensional stability of the scrimber panels were investigated. Results showed that OWFMs as basic units of scrimber had been very even in size and superior permeability. The scrimbers exhibited a three-dimensional porous structure, and the porosity had a decrease with increasing density. Both OWFMs and densification contributed to the high performance in terms of mechanical properties and water resistance. The flexural, compressive, and short-beam shearing strength were significantly enhanced with increasing density. As the density was 0.80 g cm−3, the flexural strength (MOR) was approximately 120 MPa, much larger than many selected wood-based panels. Moreover, the water resistance and dimensional stability also were closely related to the density. At the density of 1.39 g cm−3, the water absorption rate and thinness swelling rate of the panels in boiled water were only 19% and 5.7%, respectively.


Sign in / Sign up

Export Citation Format

Share Document