Identification of surface-associated proteins in the probiotic bacterium Lactobacillus rhamnosus GG

2009 ◽  
Vol 19 (2) ◽  
pp. 85-88 ◽  
Author(s):  
Borja Sánchez ◽  
Philippe Bressollier ◽  
Sthéphane Chaignepain ◽  
Jean-Marie Schmitter ◽  
María C. Urdaci
2009 ◽  
Vol 123 (2) ◽  
pp. S200-S200
Author(s):  
R.J. Boyle ◽  
L. Mah ◽  
S. Kivivuori ◽  
A. Chen ◽  
S.J. Lahtinen ◽  
...  

2013 ◽  
Vol 67 (7) ◽  
Author(s):  
Ľubomír Valík ◽  
Alžbeta Medveďová ◽  
Michal Čižniar ◽  
Denisa Liptáková

AbstractThe application of secondary temperature models on growth rates of Lactobacillus rhamnosus GG, the much studied probiotic bacterium, is investigated. Growth parameters resulting from a primary fitting were modelled against temperature using the following models: Hinshelwood model (H), Ratkowsky extended model (RTK2), Zwietering model (ZWT), and cardinal temperature model with inflection (CTMI). As experienced by other authors, the RTK2, ZWT, and CTMI models provided the best statistical indices related to fitting the experimental data. Moreover, with the biological background, the following cardinal temperatures of L. rhamnosus GG resulted from the study by the model application: t min = 2.7°C, t opt = 44.4°C, t max = 52.0°C. The growth rate of the strain under study at optimal temperature was 0.88 log10(CFU mL−1 h−1).


2010 ◽  
Vol 76 (7) ◽  
pp. 2049-2057 ◽  
Author(s):  
Ingemar von Ossowski ◽  
Justus Reunanen ◽  
Reetta Satokari ◽  
Satu Vesterlund ◽  
Matti Kankainen ◽  
...  

ABSTRACT Lactobacillus rhamnosus GG is a well-established Gram-positive probiotic strain, whose health-benefiting properties are dependent in part on prolonged residence in the gastrointestinal tract and are likely dictated by adherence to the intestinal mucosa. Previously, we identified two pilus gene clusters (spaCBA and spaFED) in the genome of this probiotic bacterium, each of which contained the predicted genes for three pilin subunits and a single sortase. We also confirmed the presence of SpaCBA pili on the cell surface and attributed an intestinal mucus-binding capacity to one of the pilin subunits (SpaC). Here, we report cloning of the remaining pilin genes (spaA, spaB, spaD, spaE, and spaF) in Escherichia coli, production and purification of the recombinant proteins, and assessment of the adherence of these proteins to human intestinal mucus. Our findings indicate that the SpaB and SpaF pilin subunits also exhibit substantial binding to mucus, which can be inhibited competitively in a dose-related manner. Moreover, the binding between the SpaB pilin subunit and the mucosal substrate appears to operate through electrostatic contacts and is not related to a recognized mucus-binding domain. We conclude from these results that it is conceivable that two pilin subunits (SpaB and SpaC) in the SpaCBA pilus fiber play a role in binding to intestinal mucus, but for the uncharacterized and putative SpaFED pilus fiber only a single pilin subunit (SpaF) is potentially responsible for adhesion to mucus.


Nutrients ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2557
Author(s):  
Yu-Chieh Cheng ◽  
Je-Ruei Liu

Obesity is closely associated with various metabolic disorders, including leptin resistance, which is characterized by high circulating leptin levels. Probiotics can decrease circulating leptin levels by alteration of the gut microbiota. Thus, they may have anti-obesogenic effects. In this study, the effects of administration of a probiotic bacterium, Lactobacillus rhamnosus GG (LGG), on gut microbiota and modulation of leptin resistance were evaluated in mice. Male Balb/C mice aged 7 weeks were fed either a normal diet (ND), high-fat diet (HFD), HFD supplemented with low-dose LGG (108 CFU/mouse/day), or HFD supplemented with high-dose LGG (1010 CFU/mouse/day) for 10 weeks. Significantly increased body weight, epididymal fat weight, and decreased leptin responsiveness to exogenous leptin treatment and ratio of villus height to crypt depth were observed in the HFD-fed mice compared to the ND-fed mice. Moreover, a remarkable increase in the proportion of Proteobacteria and ratio of Firmicutes/Bacteroidetes in the fecal microbiota were also observed in the HFD-fed mice. Supplementation of HFD with high-dose LGG restored exogenous leptin responsiveness, increased the ratio of villus height to crypt depth, and decreased the proportion of Proteobacteria in fecal microbiota. These findings suggest that LGG supplementation might alleviate leptin resistance caused by an HFD through the improvement of the digestive health of the host.


Author(s):  
Joshua A. Owens ◽  
Bejan J. Saeedi ◽  
Crystal R. Naudin ◽  
Sarah Hunter-Chang ◽  
Maria E. Barbian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document