scholarly journals A Learner Model Integrating Cognitive and Metacognitive And Its Application on Scratch Programming Projects

2020 ◽  
Vol 53 (5) ◽  
pp. 644-649
Author(s):  
Sifeng Jing ◽  
Ying Tang ◽  
Xiwei Liu ◽  
Xiaoyan Gong
Keyword(s):  
2019 ◽  
Vol 16 (3) ◽  
pp. 193-208 ◽  
Author(s):  
Yan Hu ◽  
Guangya Zhou ◽  
Chi Zhang ◽  
Mengying Zhang ◽  
Qin Chen ◽  
...  

Background: Alzheimer's disease swept every corner of the globe and the number of patients worldwide has been rising. At present, there are as many as 30 million people with Alzheimer's disease in the world, and it is expected to exceed 80 million people by 2050. Consequently, the study of Alzheimer’s drugs has become one of the most popular medical topics. Methods: In this study, in order to build a predicting model for Alzheimer’s drugs and targets, the attribute discriminators CfsSubsetEval, ConsistencySubsetEval and FilteredSubsetEval are combined with search methods such as BestFirst, GeneticSearch and Greedystepwise to filter the molecular descriptors. Then the machine learning algorithms such as BayesNet, SVM, KNN and C4.5 are used to construct the 2D-Structure Activity Relationship(2D-SAR) model. Its modeling results are utilized for Receiver Operating Characteristic curve(ROC) analysis. Results: The prediction rates of correctness using Randomforest for AChE, BChE, MAO-B, BACE1, Tau protein and Non-inhibitor are 77.0%, 79.1%, 100.0%, 94.2%, 93.2% and 94.9%, respectively, which are overwhelming as compared to those of BayesNet, BP, SVM, KNN, AdaBoost and C4.5. Conclusion: In this paper, we conclude that Random Forest is the best learner model for the prediction of Alzheimer’s drugs and targets. Besides, we set up an online server to predict whether a small molecule is the inhibitor of Alzheimer's target at http://47.106.158.30:8080/AD/. Furthermore, it can distinguish the target protein of a small molecule.


2020 ◽  
Vol 34 (09) ◽  
pp. 13420-13427
Author(s):  
Ange Tato ◽  
Roger Nkambou ◽  
Aude Dufresne

We present a serious game designed to help players/learners develop socio-moral reasoning (SMR) maturity. It is based on an existing computerized task that was converted into a game to improve the motivation of learners. The learner model is computed using a hybrid deep learning architecture, and adaptation rules are provided by both human experts and machine learning techniques. We conducted some experiments with two versions of the game (the initial version and the adaptive version with AI-Based learner modeling). The results show that the adaptive version provides significant better results in terms of learning gain.


Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 202
Author(s):  
Zhen Chen ◽  
Qian Cheng ◽  
Fuyi Duan ◽  
Xiuqiao Huang ◽  
Honggang Xu ◽  
...  

Winter wheat is a widely-grown cereal crop worldwide. Using growth-stage information to estimate winter wheat yields in a timely manner is essential for accurate crop management and rapid decision-making in sustainable agriculture, and to increase productivity while reducing environmental impact. UAV remote sensing is widely used in precision agriculture due to its flexibility and increased spatial and spectral resolution. Hyperspectral data are used to model crop traits because of their ability to provide continuous rich spectral information and higher spectral fidelity. In this study, hyperspectral image data of the winter wheat crop canopy at the flowering and grain-filling stages was acquired by a low-altitude unmanned aerial vehicle (UAV), and machine learning was used to predict winter wheat yields. Specifically, a large number of spectral indices were extracted from the spectral data, and three feature selection methods, recursive feature elimination (RFE), Boruta feature selection, and the Pearson correlation coefficient (PCC), were used to filter high spectral indices in order to reduce the dimensionality of the data. Four major basic learner models, (1) support vector machine (SVM), (2) Gaussian process (GP), (3) linear ridge regression (LRR), and (4) random forest (RF), were also constructed, and an ensemble machine learning model was developed by combining the four base learner models. The results showed that the SVM yield prediction model, constructed on the basis of the preferred features, performed the best among the base learner models, with an R2 between 0.62 and 0.73. The accuracy of the proposed ensemble learner model was higher than that of each base learner model; moreover, the R2 (0.78) for the yield prediction model based on Boruta’s preferred characteristics was the highest at the grain-filling stage.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Chaohua Fang ◽  
Qiuyun Lu

With the rapid development of information technology and data science, as well as the innovative concept of “Internet+” education, personalized e-learning has received widespread attention in school education and family education. The development of education informatization has led to a rapid increase in the number of online learning users and an explosion in the number of learning resources, which makes learners face the dilemma of “information overload” and “learning lost” in the learning process. In the personalized learning resource recommendation system, the most critical thing is the construction of the learner model. Currently, most learner models generally have a lack of scientific focus that they have a single method of obtaining dimensions, feature attributes, and low computational complexity. These problems may lead to disagreement between the learner’s learning ability and the difficulty of the recommended learning resources and may lead to the cognitive overload or disorientation of learners in the learning process. The purpose of this paper is to construct a learner model to support the above problems and to strongly support individual learning resources recommendation by learning the resource model which effectively reduces the problem of cold start and sparsity in the recommended process. In this paper, we analyze the behavioral data of learners in the learning process and extract three features of learner’s cognitive ability, knowledge level, and preference for learning of learner model analysis. Among them, the preference model of the learner is constructed using the ontology, and the semantic relation between the knowledge is better understood, and the interest of the student learning is discovered.


2018 ◽  
Vol 47 (2) ◽  
pp. 227-247 ◽  
Author(s):  
Eric G. Poitras ◽  
Negar Fazeli ◽  
Zachary R. Mayne

Information seeking and acquisition is fundamental to learning from hypermedia, but student teachers often fail to regulate their own learning. A total of 68 students learned with either a static or a dynamic version of nBrowser, a network-based tutor that adapted recommendations of online resources to support information seeking and acquisition. Results indicated that the student teachers’ ratings for the usefulness of online resources can be predicted with 69% accuracy and 77% accuracy on the entire data set using the fully specified model. The learner model is discussed in designing a recommender system that supports information-seeking behaviors in the context of network-based tutoring systems.


Sign in / Sign up

Export Citation Format

Share Document