Chemical characterization of lycium barbarum polysaccharides and its inhibition against liver oxidative injury of high-fat mice

2010 ◽  
Vol 46 (5) ◽  
pp. 540-543 ◽  
Author(s):  
Hua-Tao Wu ◽  
Xue-Jun He ◽  
Ying-Kai Hong ◽  
Tao Ma ◽  
Yan-Ping Xu ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Mei Yang ◽  
Yexin Yin ◽  
Fang Wang ◽  
Haihan Zhang ◽  
Xiaokang Ma ◽  
...  

Lycium barbarum polysaccharides (LBPs) have been proved to prevent obesity and modulate gut microbiota. However, the underlying mechanisms of LBPs’ regulating lipid metabolism remain entirely unclear. Therefore, the purpose of this study was to determine whether LBPs are able to modulate the gut microbiota to prevent obesity. The results showed that oral administration of LBPs alleviated dyslipidemia by decreasing the serum levels of total triglycerides, total cholesterol, and low-density lipoprotein-cholesterol and elevating the high-density lipoprotein cholesterol in obese mice. Furthermore, LBP treatment decreased the number and size of adipocytes in epididymal adipose tissues and downregulated the expression of adipogenesis-related genes, including acetyl-CoA carboxylase 1, fatty acid synthase, stearoyl-CoA desaturase 1, sterol regulatory element-binding protein-1c, peroxisome proliferator-activated receptor γ, and CCAAT/enhancer-binding protein α. 16S rRNA gene sequencing analysis showed that LBPs increased the diversity of bacteria, reduced the Firmicutes/Bacteroidetes ratio, and improved the gut dysbiosis induced by a high-fat diet; for example, LBPs increased the production of short-chain fatty acid-producing bacteria Lacticigenium, Lachnospiraceae_NK4A136_group, and Butyricicoccus. LBPs treatment also increased the content of fecal short-chain fatty acids, including butyric acid. These findings illustrate that LBPs might be developed as a potential prebiotic to improve lipid metabolism and intestinal diseases.


1981 ◽  
Author(s):  
Birgitta Berglund ◽  
Ulf Berglund ◽  
Thomas Lindvall ◽  
Helene Nicander-Bredberg

1973 ◽  
Vol 74 (2) ◽  
pp. 226-236 ◽  
Author(s):  
Michel Chrétien ◽  
Claude Gilardeau

ABSTRACT A protein isolated from ovine pituitary glands has been purified, and its homogeneity assessed by NH2- and COOH-terminal amino acid determination, ultracentrifugation studies, and polyacrylamide gel electrophoresis after carboxymethylation. Its chemical and immunochemical properties are closely similar to those of beef and pork neurophysins, less similar to those of human neurophysins. It contains no tryptophan (like other neurophysins) or histidine (like all except bovine neurophysin-I and human neurophysins). It has alanine at the NH2-terminus and valine at the COOH-terminus. Its amino acid composition is similar to, but not identical with those of porcine and bovine neurophysins.


Sign in / Sign up

Export Citation Format

Share Document